
Harvey Mudd College Math Clinic 2002-2003

Three Methods for Improving Relevance Ordering for Web Search

Overture Services Inc.

Final Report
May 9, 2003

Participants
Erin N. Bodine (Project Manager)
David F. Gleich

Cathy M. Kurata
Jordan A. Kwan
Lesley A. Ward (Faculty Advisor)

Daniel Fain (Liaison)

Abstract

The 2002–2003 Overture clinic project evaluated and implemented three different meth-
ods for improving relevance ordering in web search. The three methods were bottom up
micro information unit (MIU) analysis, top down MIU analysis, and proximity scoring. We
ran these three methods on the top 200 web pages returned for each of 58 queries by an
already existing algorithmic search engine. We used two metrics, precision and relevance
ordering, to evaluate the results.

Precision deals with how relevant the web page is for a given query, while relevance
ordering is how well-ordered the returned results are. We evaluated the precision of each
method and of the algorithmic search engine by hand. For relevance ordering, we recruited
other humans to compare pages and used their decisions to generate an ideal ranking for
each query. The results of each of our methods and of the algorithmic search engine are then
compared to this ideal ranking vector using Kendall’s Tau.

Our bottom up MIU analysis method achieved the highest precision score of 0.78 out of
1.00. In addition, bottom up MIU analysis received the second highest correlation coefficient
(or relevance ordering score) of 0.107 while the algorithmic search engine received the highest
correlation coefficient of 0.121. Interestingly, our proximity scoring method received high
relevance ordering scores when the algorithmic search engine received low relevance ordering
scores.

Contents

Glossary v

1 Introduction 1
1.1 Web Searching . 1
1.2 Overture Services, Inc. 1
1.3 Overview of This Report . 2
1.4 The Accomplishments of One Year . 2

2 Problem Statement 4
2.1 Original Problem Statement . 4
2.2 Revised Problem Statement . 4

3 Background 6
3.1 Web Searching . 6
3.2 HTML DOM Analysis . 6
3.3 Micro Information Units (MIUs) . 7

4 Our Approach 8
4.1 Overview of Project . 8

4.1.1 MIU Analysis and Proximity Scoring 9
4.1.2 How Re-Ranking Occurs . 10

4.2 Comparing Results . 12
4.2.1 Metric 1: Precision . 12
4.2.2 Metric 2: Relevance Ordering . 13
4.2.3 Kendall’s Tau . 13

5 Overview of Our Three Methods 15
5.1 MIUs . 15

5.1.1 Theory . 15
5.1.2 Bottom Up (following Li et al) . 15
5.1.3 Top Down (following Chakrabarti et al) 23

5.2 Proximity Scoring . 23

i

6 Testing 26
6.1 Query Testing . 26

6.1.1 Zipf’s Law . 26
6.1.2 Query List Generation . 26
6.1.3 Caching and Re-ranking the Pages 27

6.2 Human Testing . 27
6.2.1 Precision Testing (Metric 1) . 27
6.2.2 Testing for Relevance Ordering . 29

7 Programs and Source Code 33
7.1 MIU Analysis . 33

7.1.1 Files . 34
7.1.2 Unresolved Issues . 36
7.1.3 Overall Structure . 38
7.1.4 Bottom Up . 39
7.1.5 Top Down . 46

7.2 Proximity Scoring . 51
7.3 Query Retrieval . 55

7.3.1 Google SOAP . 55
7.3.2 Image Caching . 56

7.4 Re-ranking . 57
7.4.1 MIUs . 57
7.4.2 Proximity Scoring . 59

7.5 Human Rating . 60
7.5.1 Precision Scoring . 60
7.5.2 Comparisons . 61

7.6 Other Scripts . 62
7.7 Algorithmic Analysis . 64

8 Our Results 66
8.1 Metric 1: Precision Results . 67
8.2 Metric 2: Relevance Ordering Results . 69
8.3 Interesting Observations About Our Results 70

8.3.1 Observations on Relevance Ordering Data 70
8.3.2 Observations on Precision Data . 71

9 Conclusion 74
9.1 Limitations of Our Methods . 75

9.1.1 Limitations of Top Down MIU Analysis 75
9.1.2 Limitations of the MIU Approach . 76
9.1.3 Limitations of Proximity Scoring . 76

ii

10 Future Research 78
10.1 Extended Data Analysis . 78
10.2 Improved MIU Analysis . 78

10.2.1 Dual-Threshold Top Down MIU Analysis 79
10.2.2 Hybrid MIU Analysis . 80
10.2.3 Display Rendering MIU Analysis . 81

10.3 Sticky Terms . 81

Bibliography 82

Appendices: 86

A Related Research 87
A.1 Kleinberg’s HITS Algorithm . 87
A.2 Other Web Search Algorithms . 88

A.2.1 Exponentiated Kleinberg . 88
A.2.2 SALSA and TKC Effect . 89

A.3 Summer Clinic Summary . 89
A.3.1 Ideas . 90
A.3.2 Our Review of the Summer Code . 91
A.3.3 Our Report On The Summer Code 92

A.4 Topic Sensitive Search . 93

iii

Acknowledgments

We would like to thank Overture Services and Daniel Fain for giving us the opportunity
to work on this project. Dan Fain has been instrumental in providing us with direction
and advice. Additionally, we would like to thank Rosie Jones at Overture for her helpful
contributions.

We would like to thank Professor Michael Raugh for his organization and direction of the
Harvey Mudd Mathematics Clinic program. We also appreciate his administrative support
that has helped our work on the project over the entire year.

We would like to thank Leslie Fletcher, a member of the Overture Summer Clinic team,
for briefing us on their work. His continued contribution has helped move the project along.

We would also like to thank Barbara Schade for her invaluable aide in scheduling just
about everything. Without her, our project would not have run nearly as smoothly as it did.

Lastly, we would also like to thank our advisor, Professor Lesley Ward. Her previous
experience advising mathematics clinics has saved us substantial amounts of time. Also, her
patient and positive attitude has greatly encouraged us.

iv

Glossary

authority weight The weight a web page is given, depending on how good the information
on this web page is.

base set The expanded root set which includes the original root set, as well as all the web
pages pointed to by the root set, as well as some web pages that point in to the
root set.

document object model (DOM) A tree based model of HTML where the tags are nodes
in the tree and the text occurs at the leaves.

global algorithm A procedure that necessarily uses the entire web.

hub weight The weight of a web page that is dependent on the quality of the web pages
it points to.

hyper-text markup language (HTML) The language of web pages. HTML describes a
document using formatting tags to control the appearance of a page. HTML
also describes hyper-links between web pages, the key feature linking the web
together.

Kleinberg Algorithm Also known as Hyperlink-Induced Topic Search (HITS), this is an
Internet search algorithm that takes into account the text-based searches and the
hyperlinked environment of the Internet in order to return relevant search results
to a given query.

micro informational unit (MIU) A segment of web page distinguished by its content and
its display properties. A MIU contains information on only one topic. Li et al
defined this in [LPHL]. See Chapter 5.1.1.

MIU analysis The process of dividing a web page into MIUs.

MIU breakup Synonymous with MIU analysis.

precision A measure of the accuracy of results returned from query search. If E is the set
of web pages returned by the algorithm and H is the set of web pages judged
relevant by a human then

precision =
|E ∩H|
|E|

.

v

proximity scoring A procedure that ranks the relevance of a web page by the proximity of
the words in a query to each other in the page.

query term A single word in a query.

root set The set of web pages, returned by a text-search engine, which contain the terms
in the query. The Kleinberg algorithm expands this into the base set. See Sec-
tion A.1.

sticky term A word or group of words in a multi-word query that may not have to appear
near the rest of the query on the web page.

vi

Chapter 1

Introduction

1.1 Web Searching

With the growth of the Internet, World Wide Web search engines have become both more
important and more sophisticated. These search engines give order to the chaotic nature of
the web. Without them, it would be difficult, if not impossible, to find any information on
the web. For example, when a high school student researching the behavioral patterns of
pygmy hippopotami enters the query “pygmy hippopotamus behavior” into the AltaVista
search engine, the top results returned include a page from the University of Michigan
Museum of Zoology archive with a section on pygmy hippopotamus behavior and a page
from the America Zoo describing the pygmy hippopotamus and its behavioral patterns. This
illustrates how search engines make the web particularly useful as an information source.

Search engines, and the algorithms behind them, have a hard problem to solve. They
must infer the quality and importance of web pages without substantial human input. By
itself, this is a difficult problem. But, as Chakrabarti et al [CJT] note, they face an even
more difficult problem because they must also defend against individuals or groups of indi-
viduals attempting to compromise the validity of a search engine. Consequently, web search
algorithms are an active area of research.

The problem Overture Services Inc. posed to our clinic team was to improve relevance
ordering in web search. Our goal was to find a method that would return quantitatively
better search results than existing algorithms. The specific problem statement for this clinic
is in Chapter 2. This report summarizes a year’s worth of research on this project.

1.2 Overture Services, Inc.

When Overture Services, Inc. began sponsoring clinic projects at Harvey Mudd College in
2002, they were not a search engine company, but rather a company that primarily worked
with search engine companies as an auctioneer of words valuable to advertisers. Overture
Services Inc. is a pay-for-performance Internet search provider. When Overture Services
started up in 1997, search engines were not very organized. Some problems were that the
Internet search results were randomly ordered, that many links returned by search engines

1

CHAPTER 1. INTRODUCTION 2

were out of date or irrelevant to the query, and that there was a weak revenue model for
advertisers. Overture Services addresses these problems by adding sponsored links to the
search engine results of which include Yahoo, MSN, and Lycos. Overture auctions off key
words to advertisers for these sponsored link spots. Specifically, when one of the key words
appears in a query sent to a search engine, the link of the highest bidder for that word
is presented at the top of the search results, as a sponsored link. The advertiser pays
Overture Services each time someone clicks on the advertiser’s link, hence the term ‘pay-for-
performance’. Also, in order to ensure relevant search results, Overture Services filters out
advertisers whose businesses do not match up with the key word they bid on. Since then,
Overture has also become a search engine company, having purchased the AltaVista and
FastWeb search engines.

1.3 Overview of This Report

The remainder of this report contains a detailed explanation of our research, development
and testing of three methods developed with the intent of improving the ranking of web
search results. Chapter 2 discusses our problem statement and how our problem state-
ment guided our research and implementation. Chapter 3 gives background information
necessary for a detailed understanding of our re-ranking methods. It includes information
on major theoretical approaches to web searching (global vs. local rankings), descriptions
of micro information units (MIUs) and MIU analysis, and HTML document object model
trees. Chapter 4 describes the big picture of our project. It discusses the approach we take
and what metrics we use to produce our results. Chapter 5 describes the three methods
we develop for re-ranking web search results we develop. This chapter contains a detailed
explanation of how our three methods work. Chapter 6 explains how tests were conducted
to determine how humans ranked results returned from a search engine. Chapter 7 gives a
detailed description of the source code developed to implement our three methods.

Chapter 8 reviews the results we gathered from testing our three methods and includes
a section on interesting observations about our data which, due to time constraints, were
not explored. Chapter 9 describes our final conclusions about our three methods, including
a discussion of the drawbacks of each of our methods and of the query set we used. Finally,
we conclude with a discussion in Chapter 10 of extensions to our research we would have
liked to explore.

We also include an annotated bibliography and a glossary of technical terms, as well
as appendices containing our project timeline, related research, and selected pieces of our
source code.

The full source code, all data collected, and tables containing the results of testing are
contained on an accompanying CD.

1.4 The Accomplishments of One Year

In broad terms, we implemented three methods for re-ranking sets of web pages. The original
web pages are found by an algorithmic search engine in response to a given query. Two of

CHAPTER 1. INTRODUCTION 3

those methods parse web pages into micro information units (MIUs), and re-rank using on
the content of each MIU. The idea is that a page would be ranked higher if all terms in
the query appear in the same MIU, and lower if the query terms are scattered in different
MIUs. The third method computes a proximity score for each page and re-ranks based on the
magnitude of that score. The rankings produced by each of our methods was then compared
to a standard ranking determined by human judgment and to the ranking of the algorithmic
search engine.

We tested the re-ranking methods on a set of 30 queries. We used two metrics, relevance
ordering and precision, to determine how good the re-rankings of each of our methods were.
For some queries, some of our methods gave better rankings than the algorithmic search
engines; for others the same or worse. Overall, we found that our methods of re-ranking
did not show a statistically significant improvement over the algorithmic search engine’s
ranking. However, with a some suggested future improvements our methods may start
showing a consistent advantage.

Chapter 2

Problem Statement

In this chapter we present original problem statement for out 2002-2003 Overture Clinic. We
then present the revised problem statement that evolved out of discussions with our sponsor.

2.1 Original Problem Statement

At the beginning of the Fall 2002 semester, Overture Services gave us the problem statement:

This project will build on previous Math Clinic projects on Web search, with
the goal of improving techniques for topic dependent relevance ordering. Of the
different approaches to ranking Web search results, some are static and global,
using the Web as a whole to vote on the relative importance of pages, while others
are more dynamic and local, ranking pages only within a search result cluster.
In a purely static and global approach, if page A appears before page B when a
user enters a search query Q, then A will appear before B for all other queries
Q′. An example of a local technique is Kleinberg’s HITS technique for link
analysis; Brin and Page’s PageRank is global. In a Summer 2002 Math Clinic,
a specific approach was proposed for focusing link analysis, effectively making
it more local. This 2002-2003 Math Clinic project will begin by evaluating that
approach against some competing baseline approaches, then look at ways to
blend local and global relevance scores, and compare local analysis within a topic
cluster to local analysis within a search result set.

Since the beginning of the fall semester the 2002-2003 Overture Clinic Team has worked
to refine the given problem into an area narrow enough to research implement in a one year
period, but broad enough to touch on all of the various topics given in the original problem
statement. The remainder of this chapter discusses the more definitive problem statement
we designed.

2.2 Revised Problem Statement

The original problem statement stated in the previous section lays out three goals for the
Overture Clinic Team.

4

CHAPTER 2. PROBLEM STATEMENT 5

1. Improve techniques for topic dependent relevance ordering.

2. Evaluate the Summer 2002 Overture Clinic’s approach against competing baseline
approaches.

3. Investigate ways to blend local and global relevance scoring.

The first major goal of improving techniques for topic dependent relevance ordering has
been modified and made more specific. Instead of improving techniques, our main goal is
to compare current techniques. In comparing existing methods we hope to determine if one
technique has a better precision or relevance ordering than other techniques (See Section 4.2.1
and Section 4.2.2).

The second major goal of evaluating the Summer Clinic’s approach against competing
approaches has changed to a more basic question. Does the Summer Clinic’s approach of
MIU analysis done prior to link analysis seem reasonable? Thus, our goal of evaluating the
Summer Clinic’s approach became the more specific task of analyzing the Summer Clinic’s
approach and determining if it should be further pursued (see Section A.3.1 for full descrip-
tion of the Summer Clinic’s approach).

The third major goal of investigating ways to blend local and global relevance scoring is
rather vague and broad. In order to pursue other goals, this portion of the problem statement
has been dropped. Instead, the idea of MIU [Micro Information Unit] analysis (see Section 5.1
for a full description of MIU Analysis) was further investigated, and then implemented
and compared with another topic-dependent relevance ordering technique, namely proximity
scoring.

Thus, our specific problem statement has these four main components:

1. Quantitatively test existing techniques for topic dependent relevance ordering in an
attempt to determine if some techniques are “better” than others.

2. Analyze the Summer 2002 Overture Clinic’s approach and determine whether the idea
of MIU analysis done prior to link analysis should be further pursued.

3. Further investigate the idea of Micro Information Unit (MIU) analysis.

4. Implement one or more versions of MIU analysis and compare with an implementation
of Proximity Scoring.

The term “better” is vague. For an explanation of the metric we will use to determine which
technique is “better”, see Section 4.2.1 and Section 4.2.2.

The subsequent chapters of this report contain our proposed solutions to the issues raised
in this problem statement. We did this by concentrating our efforts on improving relevance
ordering through our three methods: bottom up MIU analysis, top down miu analysis, and
proximity scoring.

Chapter 3

Background

In this chapter, we describe some search algorithms which we will explore further in this
paper. Some of these algorithms have been implemented by search engines, while others
are recent ideas that could theoretically improve search results for a given query. We are
primarily interested in improving the relevance ordering of the top few results for a given
query. Our research is directed towards this end.

3.1 Web Searching

Web searching algorithms can be classified into two categories: global algorithms and local
algorithms. Global search algorithms start with the entire web as the initial searching
domain. Contrast this with a local searching algorithm, which starts with a subset of the
web, often one related to a specific query, and uses the link structure of these pages to
generate a more complete set to search on.

An example of a global algorithm is Google’s PageRank algorithm developed by Brin and
Page [BP]. Broadly speaking, Google takes the entire web and pre-ranks every single page
using on a self-reinforcing link analysis process. That is to say, pages that have more links
to them receive higher rankings, and those higher ranked pages give stronger scores to those
pages that are linked to them. This process is done offline, before a query is entered. Once
Google receives a query, it can just refer to the pre-ranked list and return the appropriate
pages in order. In particular, if page A is ranked higher than page B in response to one
query, it will also be ranked higher than page B for all other queries.

Many modifications have been made to PageRank, and researchers are still exploring
ways to improve the algorithm. Ambiguous queries could perhaps be resolved by exploiting
the context of the words that appear in the query; this is called topic sensitive search and is
explored by Haveliwala [Hav] (see appendix A.4).

3.2 HTML DOM Analysis

The HTML Document Object Model (DOM) is a structured interface to manipulate HTML
documents. [DOM]. HTML documents can be parsed according to the DOM structure [HWR].

6

CHAPTER 3. BACKGROUND 7

This process is also known as HTML DOM Analysis. This is graphically represented
by the HTML DOM tree (also known as the HTML tag tree), which is shown in Fig-
ure 3.1 [DOMTree]. HTML tag trees consist of a series of nodes. Each node in this tree has
a tag name (e.g. <body>, <div>, <p>, etc.), content text, and its display attributes (e.g.
color, font, size, etc.). For example, in Figure 3.1, the very top node has the tag, <body>,
with no content text, and no display attribute. Each node in the tree also falls under the
following categories: parent, child, or sibling. A parent node is an ancestor node of a node,
while the child node is a descendant node of a parent node. If two nodes have the same
parent node, then they are called siblings. In Figure 3.1, the bottom tags and <i> are
sibling nodes which are children nodes of the parent node, <p>.

Figure 3.1: The HTML code in the upper left hand corner is parsed using the
DOM structure, which then results in the DOM Tree, shown at lower right where
each node is an HTML tag with no content text, and no display attributes.

3.3 Micro Information Units (MIUs)

Web pages often deal with more than one topic. This can lead to a search engine returning
pages that are irrelevant to a given query, if the query terms do not occur close together on
the web page but instead occur separately in parts of the web page dealing with different
topics. Li et al [LPHL] proposed breaking up web pages into micro information units (MIUs),
that is, into blocks of text dealing with only one topic. This breakup process is called MIU
analysis. In order to increase the precision of Internet search results, a web page can be
run through a MIU analysis. This process exploits the HTML DOM structure described
above. We implemented and tested two versions of MIU Analysis, and discuss more this in
Chapter 5.

Chapter 4

Our Approach

This chapter outlines our approach to improving relevance ordering in web searches. We give
a general overview with brief descriptions of the major components of the project, followed
by an in depth explanation of how we re-ranked pages, and how those re-rankings were
compared with a standard ranking based on human judgment.

4.1 Overview of Project

Figure 4.1: Pipeline diagram of an overview of our project. We take a query
and run it through an algorithmic search engine. We then take the top 200
pages returned by the search engine and run them through our three methods:
Top Down, Bottom Up, and Proximity Scoring. The first two methods return
MIUs which are re-ranked, and the last returns whole pages which are re-ranked.
These re-ranked results are then compared to a standard ranking based on human
judgment.

A high level overview of our project is represented in graphical form in Figure 4.1. This
graphical representation is called a pipeline diagram. It shows how we take a query and pro-
duce a ranking of pages for that query. We start by running a query through an algorithmic
search engine. Due to time constraints, we used Google’s SOAP protocol (see Section 7.3.1)
to collect Google’s top 200 pages for each of the 60 queries we used (see Section 6.1 for
our queries). Although we used Google, our methods are generalizable to any algorithmic

8

CHAPTER 4. OUR APPROACH 9

search engine. We then take these top 200 pages and run them through our three algorithms
(bottom up MIU analysis, top down MIU analysis, and proximity scoring). The first two
algorithms break each page up into one or more MIUs (see Section 5.1.1 for MIU analysis)
and the last algorithm generates a numeric score based on the distance between sets of query
words (see Section 5.2 for proximity scoring). Using the results from MIU analysis and prox-
imity scoring, the originally collected 200 pages are re-ranked using two re-ranking methods
we developed (see Section 4.1.2). The newly re-ranked lists are then compared to a ranking
based on human judgment, and to the original Google ranking.

4.1.1 MIU Analysis and Proximity Scoring

During the course of our project we developed three methods to aid in re-ranking sets of
web pages in order to improve relevance ordering. These three methods are bottom up MIU
analysis, top down MIU analysis, and proximity scoring.

Each of our three methods were highly influenced by prior work. Our bottom up MIU
analysis method was a reimplementation of Li et al’s MIU segmentation [LPHL]. Likewise,
our proximity scoring algorithm was from Hawking and Thistlewaite [HT]. In contrast to
these two methods, our top down MIU analysis was inspired by Chakrabarti et al [CJT].
Chakrabarti et al proposed a top down tag tree analysis algorithm to identify dissimilar
portions of a web page. We used their top down analysis idea to create our own top down
MIU analysis method.

4.1.1.1 Bottom Up MIU Analysis

Bottom up MIU analysis breaks a page up into MIUs by starting at the bottom of the page’s
HTML DOM tree (see Section 3.2) and analyzing the tree upward. As the algorithm works
its way up the tree, for each set of children nodes (nodes that share the same parent node)
the algorithm determines whether the children are sufficiently similar. If they are not then
they remain unmerged. If they are, then they are considered sufficiently similar to be in the
same MIU, and the children nodes are merged together. In bottom up MIU analysis the tree
is compressed as the algorithm progresses. (See Section 5.1.2 for details.) Our bottom up
MIU algorithm is based on work done by Li et al [LPHL].

4.1.1.2 Top Down MIU Analysis

Top down MIU analysis breaks a page up into MIUs by starting at the top of the page’s
HTML DOM tree (see Section 3.2) and analyzing the tree downward. As the algorithm works
its way down the tree, at each parent node the algorithm determines whether the children of
that parent are sufficiently similar to the document as a whole. If they are sufficiently similar
then the algorithm continues searching down the tree. If they are not sufficiently similar, i.e.
they are sufficiently different, then the algorithm stops and the each child node is a separate
MIU. In top down MIU analysis the tree is expanded as the algorithm progresses down the
tree. (See Section 5.1.3 for details.) Our top down MIU algorithm is inspired by work done
by Chakrabarti et al [CJT].

CHAPTER 4. OUR APPROACH 10

4.1.1.3 Proximity Scoring

Proximity scoring examines the distance between words. For a given query, proximity scoring
computes a score for a passage of text (on a web page) based on how many words lie between
the words in the query. Since there can be several terms in a query, our proximity scoring
method cannot just compute the distance between two words in a query. To deal with
multiple (more than two) query terms, we implement a proximity scoring method using the
idea of a span. A span is simply a unique string of words that contain all the query terms.
Thus, instead of computing the distance between two query terms, we compute the number
of words in a span (which contains all the query terms). (See Section 5.2 for details.)

4.1.2 How Re-Ranking Occurs

We use two methods for re-ranking in our approach. One of the methods re-ranks pages in
terms of MIUs, the other re-ranks pages according to their proximity scores. Both re-ranking
methods try to take advantage of the original algorithmic search engine rank. Section 4.1.2.1
discusses re-ranking via MIUs and Section 4.1.2.2 explains re-ranking via proximity scores.

In this section, n denotes the number of terms in a query q, and p denotes a page.

4.1.2.1 MIU Window Re-Ranking

Once MIU analysis has broken a page into MIUs, we can use those MIUs to re-rank pages
with the intention of improving precision. Although Li et al [LPHL] propose a method to do
this, we devised a new method for our project. We describe above an overview of our MIU
analysis (Section 4.1.1), and provide an in depth explanation in Sections 5.1.2 and 5.1.3.

Li et al focus on the number of query terms in each MIU in their re-ranking method.
They compute two scores for each page, primaryScore(p) and secondaryScore(p). Here
primaryScore(p) and secondaryScore(p) are the maximum number of query terms in a
single MIU and any two adjacent MIUs, respectively. Both of these values are between 0 and
n. Li et al then compute sets pageSetn, pageSetn−1, . . ., pageSet1, pageSet0 where pageSetn
contains all pages with primaryScore(p) = n and any pages with secondaryScore(p) = n.
In general, pageSeti contains any pages with secondaryScore(p) = i.

Li et al then generate the final ranked list of pages by ranking pages in pageSeti+1 above
pages in pageSeti (that is, rank in descending order) and among each pageSeti based on the
original algorithmic search engine rank. Within pageSeti, pk is ranked above pl if and only
if algorithmicRank(pk) > algorithmicRank(pl). For an example, see Figure 4.2.

Our method focuses, instead, on the number of MIUs required to contain all the query
terms. Rather than compute two scores for each page, we compute MIUWindowSize(p)
which is the size of the smallest set of MIUs that contain all n query terms in query q. The
value MIUWindowSize(p) ranges between one and ∞. Like Li et al, we group pages into
sets based on MIUWindowSize(p). In our case, MIUWindowSeti contains all the pages
with MIUWindowSize(p) = i. This relationship is formally expressed in Equation 4.1.

MIUWindowSeti = {p |MIUWindowSize(p) = i}. (4.1)

CHAPTER 4. OUR APPROACH 11

If n = 2 and
pageSet2 = {p2, p5, p3}
pageSet1 = {p1, p4, p6}

then the final ranked list of pages from best to worst is

p2, p3, p5, p1, p4, p6.

In this example, pages p2 and p5 contain one MIU that had all n terms, so these pages
belong in pageSet2. Page p3 contains all n terms in two adjacent MIUs and also belongs
in pageSet2. Pages p1, p4, and p6 had at most one term in any pair of adjacent MIUs, so
they belong in pageSet1.

Figure 4.2: An example of Li et al’s MIU re-ranking method. Here n is the
number of terms in the query. pi is the ith page from the algorithmic search
engine, that is, algorithmicRank(pi) = i. Within each set, Li et al order the
pages by their algorithmicRank. For example, from pageSet2, they rank page p2

above page p5.

We generate the final ranked set of pages by ranking pages in MIUWindowSeti above
pages in MIUWindowSeti+1 (that is, rank in ascending order) and, like Li et al, rank among
each MIUWindowSeti using the original algorithmic search engine rank. For an example
of our method, see Figure 4.3.

We thought our method would more effectively re-rank pages query terms spread over
more than two MIUs. The pages in Figure 4.2 and Figure 4.3 are the same, but they are
re-ranked differently by the two methods. In ours, the final rank of p1 is less than every
other page because it did not contain all the query terms, whereas Li et al’s algorithm ranks
p1 as the fourth result.

4.1.2.2 Proximity Score Binning

Ideally, a re-ranking algorithm would incorporate the proximity scores into an existing rank-
ing calculation involving all the search engine factors such as algorithmic score. However,
without access to the internal search algorithm calculations, such a method is not possible.
Instead, we devised a proximity score binning approach that exploits the both our proximity
scores and the original algorithmic search engine rank. For details on how we compute prox-
imity scores, see Section 4.1.1 for an overview, and Section 5.2 for more detail. Let prox(p)
be the proximity score of page p.

We first sort the pages in order of descending proximity scores, and call this vector
proxranks. Thus, if i < j, prox(proxranksi) > prox(proxranksj). We then take this
vector and split it into sets, or bins, of size b. The expression for bini is formally defined in
Equation 4.2. Finally, we rank bini above bini+1 (that is, rank the bins in ascending order)
and, like Li et al, we rank within bins by the algorithmic search engine rank. For an example
of our proximity scoring re-ranking method, see Figure 4.4.

CHAPTER 4. OUR APPROACH 12

If n = 2 and
MIUWindowSet1 = {p5, p2}
MIUWindowSet2 = {p3}
MIUWindowSet3 = {p4, p6}

MIUWindowSet∞ = {p1}
then the final ranked list of pages from best to worst is

p2, p5, p3, p4, p6, p1.

In this example, pages p2 and p5 contain one MIU that had all n terms, so these pages
belong into MIUWindowSet1. Page p3 contains all n terms in two adjacent MIUs and
also belongs in MIUWindowSet1. Pages p4 and p6 contain all the query terms in at
least three MIUs and belong in MIUWindowSet3. Finally, page p1 does not contain all
the query terms and belongs in MIUWindowSet∞. Note that this example is consistent
with Figure 4.2 and shows the alternate ranking induced by our method.

Figure 4.3: An example of our MIU window re-ranking method. Here, n is the
number of pages in a query, and pi is the ith page from the algorithmic search
engine, that is, algorithmicRank(pi) = i. Note that we rank page p3 below page
p5

bini =
b⋃

j=1

proxranksib+j (4.2)

4.2 Comparing Results

We use two metrics, precision and relevance ordering, to measure the accuracy of our re-
ranking methods.

4.2.1 Metric 1: Precision

The precision metric measures what fraction of the web pages returned by Google and by
each re-ranking method judged by humans to be relevant to the query. The formula for
precision is

precision =
|E ∩H|
|E|

. (4.3)

Here, E is the set of ranked results from our method, and H is the set of results deemed
relevant by humans. In our tests we computed the precision of the top ten results returned
by each method, for each of 58 queries.

CHAPTER 4. OUR APPROACH 13

If b = 3 and
prox(p5) = 11.2 prox(p2) = 5.0
prox(p3) = 10.7 prox(p6) = 4.8
prox(p4) = 8.4 prox(p10) = 4.7
prox(p1) = 6.9 prox(p9) = 3.2
prox(p8) = 6.5 prox(p7) = 1.3

then
bin1 = {p5, p3, p4}
bin2 = {p1, p8, p2}
bin3 = {p6, p10, p9}
bin4 = {p7}

and the final list of ranked pages from best to worse is

p3, p4, p5, p1, p2, p8, p6, p9, p10, p7.

Figure 4.4: An example of our proximity score re-ranking method. Here, pi is the
ith page from the algorithmic search engine, that is, algorithmicRank(pi) = i.

4.2.2 Metric 2: Relevance Ordering

Relevance ordering measures how “well ordered” the results returned by Google and our
three methods are. That is, the orderings from Google and our three methods are compared
to an “ideal ranking” that is constructed by humans. We use Kendall’s Tau to measure how
well correlated the re-ranked results are to the ideal ranking. The following section describes
Kendall’s Tau. These numbers are then compared to the correlation computed for Google
against the ideal ranking. In our tests we applied the relevance ordering metric to each of
30 queries.

4.2.3 Kendall’s Tau

Kendall’s Tau takes in orderings of two data sets X and Y and returns a correlation measure
that is always between −1 and 1. A measure of 1 indicates that the data sets are perfectly
correlated, i.e. if X is data for weight and Y is data for height then a measure of 1 means
that weight always increases with increasing height. Similarly, a measure of −1 means that
the two ordered data sets are perfectly negatively correlated.

To compute this, order one set of data (say X) and line up the corresponding data for
Y accordingly. An example is shown in Table 4.1. Then compare each data point in Y with
the ones below it. If a data point below is greater than the data point in question, it is said
to be concordant. Similarly, if a data point below is less than the data point in question, it
is said to be discordant. Let C and D be the numbers of concordant and discordant pairs,
respectively, and let n be the size of the data sets. Then Kendall’s Tau is computed as
follows:

CHAPTER 4. OUR APPROACH 14

τ =
C −D(

n
2

) . (4.4)

Height (X) Weight (Y) Concordant Discordant
60 100 9 0
63 105 8 0
65 120 6 1
67 117 6 0
68 170 4 1
70 150 4 0
72 225 0 3
73 215 0 2
74 210 1 0
76 211 0 0

total 38 7

Table 4.1: In this example, data for X is ordered, and the corresponding data
for Y follows. To illustrate, the number 8 under “Concordant” represents the
number of times the weight 105 is less than weights in the rows below it. Thus,
the numbers under “Concordant” represent the number of concordant pairs for
a given datum from Y , and the total is shown below. The Discordant column is
similar, except it counts the number of data points in Y that are greater than
the datum in the same row. Here, n is equal to 10, as there are 10 pairs of data.
Hence there are

(
10
2

)
or 45 pairs in all. Subtracting 7 from 38 and then dividing

out by the total gives τ = .689. This value of τ suggests that this data is strongly
positively correlated.

Chapter 5

Overview of Our Three Methods

5.1 MIUs

5.1.1 Theory

In a 2002 paper [LPHL], Li et al define the concept of a micro information unit (MIU) and
present an algorithm for bottom up MIU analysis. They define an MIU as a segment of a
web page, distinguished by its content and display properties. Further, each MIU should be
topically cohesive. More intuitively, an MIU is just a small piece of information within a
larger web page. Figure 5.1 shows a sample page divided into MIUs.

Li et al intended MIUs as a search engine feature to resolve queries with low precision
(see Section 4.2.1 for more detail on precision). The example Li et al used is the phrase
“free download video.” Entering this query into the Google search engine returns a series
of highly authoritative, but not particularly relevant, pages to the search query. When they
performed this search, the first ranked result returned was Real Inc.’s RealPlayer website.
This page offers a free download of a video player (this is why Google returned it) but never
discusses the real intent of the query – freely downloadable videos. In fact, the terms “free,”
“download,” and “video” all occur in topically distinct areas of this page.

Thus, MIUs help resolve such multi-term queries. After the initial ranking, the search
engine re-ranks the results and gives higher scores to those pages with MIUs that contain all
of the query words. This strategy eliminates erroneous results like the previous situation.

The difficulty with MIUs, then, lies in finding the MIUs on a page. This is the process
of MIU analysis. The next two sections describe the two methods of MIU analysis we used.
In Section 10.2, we propose more complicated but untested algorithms for MIU analysis.

5.1.2 Bottom Up (following Li et al)

Our bottom up MIU analysis is a reimplementation of Li et al’s algorithm [LPHL]. In this
section, we present Li et al’s algorithm from their paper. The small deviations from their
algorithm are discussed in Section 7.1.4.

Li et al propose an algorithm for this process that operates on an HTML tag tree.
The algorithm first parses the hyper-text markup language (HTML) into a DOM tree. See

15

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 16

Education Review

a journal of book reviews

reviews
 English
 Spanish
 Portuguese
 brief reviews

editors

contribute

subscribe

publishers

search

 Education Review publishes reviews of
recent books in education, covering the
entire range of education scholarship and
practice.

Education Review is made available to
the public without cost as a service of the
College of Education at Arizona State
University. All submissions are refereed
by the Editors:

? General Editor
Gene V Glass
Arizona State University

? Brief Reviews Editor
Kate Corby
Michigan State University

 Recent Reviews

? Beede, Martha, & Burnett, Darlene.
(Eds.). (1999). Planning for Student
Services: Best Practices for the 21st
Century. Society for College and
University Planning. Reviewed by
Gypsy M. Denzine.

? Santa Ana, Otto. (2002). Brown tide
rising: Metaphors of Latinos in
contemporary American public
discourse. Univ. of Texas Press.
Reviewed by Mario Castro.

? Kaser, Joyce; Mundry, Susan; Stiles,
Katherine E. & Loucks-Horsley,
Susan. (2002). Leading Every Day:
124 Actions for Effective Leadership.
Corwin Press. Reviewed by Rodney

Education Review

a journal of book reviews

reviews
 English
 Spanish
 Portuguese
 brief reviews

editors

contribute

subscribe

publishers

search

 Education Review publishes reviews of
recent books in education, covering the
entire range of education scholarship and
practice.

Education Review is made available to
the public without cost as a service of the
College of Education at Arizona State
University. All submissions are refereed
by the Editors:

? General Editor
Gene V Glass
Arizona State University

? Brief Reviews Editor
Kate Corby
Michigan State University

 Recent Reviews

? Beede, Martha, & Burnett, Darlene.
(Eds.). (1999). Planning for Student
Services: Best Practices for the 21st
Century. Society for College and
University Planning. Reviewed by
Gypsy M. Denzine.

? Santa Ana, Otto. (2002). Brown tide
rising: Metaphors of Latinos in
contemporary American public
discourse. Univ. of Texas Press.
Reviewed by Mario Castro.

? Kaser, Joyce; Mundry, Susan; Stiles,
Katherine E. & Loucks-Horsley,
Susan. (2002). Leading Every Day:
124 Actions for Effective Leadership.
Corwin Press. Reviewed by Rodney

Figure 5.1: This figure demonstrates one possible division of the web page
http://www.ed.asu.edu/edrev/ into MIUs. The MIUs are the boxes in the
figure.

section 3.2 for more details on the DOM tree. The DOM tree is the tag tree used in the rest
of the algorithm. Next, the algorithm performs stemming and stop list culling on the text
in the DOM tree to simplify later textual processing.

In order to segment the page properly, Li et al define two cases for merging nodes.

1. Merge heading paragraphs with content paragraphs.

2. Merge adjacent text paragraphs.

Li et al define the following helper functions to use in identifying which nodes to merge.

• length(A) = the number of words in node A.

• tagRank(A) = the display emphasis of node A, that is, a value based on the HTML
tag of A. The most highly weighted tags are those that specifically denote headings,
such as <h1>, <h2>, etc. Next are formatting tags such as, , , <i>.
Finally, font tags such as , <size>, <big>. All other tags have lower values
than these three classes.

• neighbor(A, B) = true if node A is the left sibling/neighbor of node B in the tag tree.

• displaySimilarity(A, B) = the number of common display features in nodes A and B.
Display features include fonts, sizes, and colors.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 17

• contentSimilarity(A, B) = the number of common words in nodes A and B.

Sections 5.1.2.1 and 5.1.2.2 expand upon how Li et al identify nodes to merge. Sec-
tion 5.1.2.3 explains the entire MIU analysis algorithm. Finally, Section 5.1.2.4 contains a
visual depiction of the algorithm running on a hypothetical tag tree.

5.1.2.1 Merging Header and Content Paragraphs

Li et al establish two conditions for two nodes to exist in a header-paragraph relationship.
First, given a node A and a node B, A is a potential header to B if A has a greater tagRank
than B, if the length of A is strictly less than the length of B, if A is B’s left neighbor, and
if A and B share at least one word. Equation (5.1) formalizes this condition.

headerContent(A, B) =

(tagRank(A) ≥ tagRank(B)) ∧ (length(A) < length(B)) ∧ (5.1)

neighbor(A, B) ∧ (contentSimilarity(A, B) > 0)

Intuitively, this condition looks for two adjacent nodes looking like a header and a para-
graph that share at least one word. Typically, a header has a stronger visual emphasis than
the following paragraph. Headers are also shorter than their following paragraphs.

However, this condition is insufficient to fully identify a header-paragraph relationship.
In addition, there must exist another pair of nodes C and D, such that headerContent(C, D)
holds. Also, the display similarity between nodes A and C and the display similarity between
nodes B and D must be greater than some constant, δ. Li et al experimentally determined
δ = 3. Equation (5.2) specifies this condition.

HeaderAndParagraph(A, B) =

headerContent(A, B) ∧ ∃(C, D), headerContent(C, D) ∧ (5.2)

(displaySimilarity(A, C) ≥ δ) ∧ (displaySimilarity(B, D) ≥ δ)

This condition defines when two nodes have a header paragraph, content paragraph
relationship. Note that if HeaderAndParagraph(A, B) holds, then there must exist another
pair (C, D) such that HeaderAndParagraph(C, D) also holds. Thus, for all pairs (A, B)
and (C, D) the algorithm merges nodes A and B, as well as all possible nodes C and D.

5.1.2.2 Merging Adjacent Text Paragraphs

Li et al define a simple condition that must hold to merge two adjacent text paragraphs.
The only stipulation is that the nodes be adjacent and share at least some number of words,
ω. Through experimentation, they concluded ω = 2 sufficiently captured adjacent node
similarity. Since the textual comparison occurs after stemming and stop-list culling, this
requirement makes sense. Equation (5.3) expresses this condition.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 18

ParagraphAndParagraph(A, B) = (5.3)

neighbor(A, B) ∧ contentSimilarity(A, B) ≥ ω

5.1.2.3 Li et al’s Algorithm

Li et al’s overall algorithm first fully segments the page using the HTML DOM parse tree,
then attempts to merge the bottom-most nodes in this tree and continually steps up through
the tree seeking new nodes to merge. Consequently, we call this algorithm a bottom up
approach.

In the algorithm, Li et al use a few variables relating to the DOM tree.

• maxDepth is the maximum depth of the tree.

• treeDepth is the depth where the algorithm is currently working. This value iterates
from maxDepth− 1 to 0.

• subtrees is the set of sub-trees with a root node at treeDepth.

• subtreei is the ith sub-tree with only leaf nodes, in the set subtrees.

See Figure 5.2 for the algorithm. Roughly, the important aspects of the algorithm are:

1. Merge header and content paragraphs.

2. Merge adjacent text paragraphs and restart the algorithm at step 1 if anything is
merged.

3. Merge singleton children with their parents.

5.1.2.4 Example of Li et al’s Algorithm

Figures 5.3 through 5.8 visually depict how Li et al’s algorithm uses a tag tree to deter-
mine MIUs in a document. The figure captions contain the narration associated with our
hypothetical example.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 19

LiBottomUpMIUAnalysis(tree)
1 for treeDepth← maxDepth− 1 to 0
2 do subtrees← {subtreei | subtreei is a sub-tree at level treeDepth}
3 while |subtrees| > 0
4 do for each subtreei ∈ subtrees
5 do if |subtreei| = 2 ∧ headerContent(A, B)
6 then Merge(A, B)
7 else for each (A, B),neighbor(A, B)
8 do if headerContent(A, B)∧
9 HeaderAndParagraph(A, B)

10 then for all nodes (C, D) such that
11 HeaderAndParagraph(A, B)
12 do Merge(C, D)
13 endfor
14 Merge(A, B)
15
16 endfor
17 for each subtreei ∈ subtrees
18 do for each (X, Y) such that neighbor(X, Y)
19 do if ParagraphAndParagraph(X,Y)
20 then Merge(X, Y)
21 goto line 4
22 endfor
23 endfor
24 for each subtreei ∈ subtrees
25 do if A has no sibling
26 then Merge(A, parent(A))
27 endfor
28 endwhile
29 endfor

Figure 5.2: Li’s algorithm

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 20

subtrees

subtree
1

subtree
3

subtree
2

subtree
4

subtree
5

N1 N2 N3

N4

N5 N6 N7 N8 N9 N10 N11

Figure 5.3: First figure in Li et al example. Given the tag tree depicted in this
figure, the algorithm begins by looking at the bottom level of the tag tree. The
set subtrees consists of all the subtrees enclosed inside the dashed box, subtree1

through subtree5. The node labels, N1 through N11 are used in the following
diagrams to clarify ambiguities. The algorithm begins by examining subtree1. It
finds a singleton node, which the algorithm merges with its parent. This step
completes processing of subtree1. Moving to subtree2, the algorithm first tests
headerContent(N2, N3), which returns true. Since |subtree2| = 2, nodes N2 and
N3 are merged.

subtrees

subtree
1

subtree
3

subtree
2

subtree
4

subtree
5

N2N3

Figure 5.4: Second figure in Li et al example. Here, the algorithm reexam-
ines subtree2 to look for singleton nodes. It finds the new merged node N2N3

and merges this node with its parent. Now, the algorithm moves to subtree3.
This subtree has no children, so the algorithm ignores it and moves to examine
subtree4. First, it tries to merge nodes N5 and N6 using the headerContent test.
This fails. It next examines headerContent(N6, N7), which succeeds.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 21

subtrees

subtree
1

subtree
3

subtree
2

subtree
4

subtree
5

N6N7

Figure 5.5: Third figure in Li et al example. After previously merging nodes N6

and N7, the algorithm restarts and attempts to find header-content relationships
again. Now, headerContent(N5, N6N7) succeeds, and these nodes are merged
into N5N6N7, which is then merged with its parent.

subtrees

subtree
1

subtree
3

subtree
2

subtree
4

subtree
5

A B C D

Figure 5.6: Fourth figure in Li et al example. When the algorithm considers
subtree5, it first finds that headerContent(A = N8, B = N9) is true. It then looks
for nodes C, D such that HeaderAndParagraph(A, B) holds. The algorithm
finds C = N10, D = N11, and merges these nodes. Since it does not find any
other nodes C, D, it merges N8 and N9. Next, the algorithm attempts to merge
the nodes N8N9 and N10N11 as adjacent text paragraphs, which fails. Since this
is not a singleton subtree, the algorithm does no more merging on subtree5. The
algorithm now moves to the next level in the tag tree.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 22

subtrees

subtree
1

subtree
3

subtree
2

subtree
4

subtree
5

Figure 5.7: Fifth figure in Li et al example. In processing the higher levels of the
tag tree, the algorithm does not merge any other nodes. This is the final merged
tag tree.

MIU 1 MIU 3

MIU 5

MIU 2 MIU 4

MIU 6

Figure 5.8: Sixth figure in Li et al example. Here, the algorithm has completed
and returns each leaf node as an MIU.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 23

5.1.3 Top Down (following Chakrabarti et al)

Our algorithm for top down MIU analysis is based on a paper by Chakrabarti et al [CJT].
In that paper, they introduce the idea of micro-hubs as an improvement in the Kleinberg
algorithm. In many ways, Chakrabarti et al’s micro-hubs are analogous to our MIUs. They
intended their micro-hub analysis to identify portions of a web page that are too dissimilar
from the rest of the root set in the Kleinberg algorithm. Presumably, these dissimilar portions
are irrelevant links and might constitute a clique attack against the search algorithm.

Like Li et al [LPHL], Chakrabarti et al start micro-hub analysis using the HTML DOM
tree. In contrast to Li et al, Chakrabarti et al start their micro-hub analysis at the top of
the HTML DOM tree. We adapted their micro-hub analysis to devise the top down MIU
analysis algorithm.

The fundamental idea behind our top down MIU analysis algorithm is that MIUs should
not be too similar to the entire document. To implement this idea, we first parse the HTML
of a page into an HTML DOM tree (see Section 3.2).

Figures 5.9 and 5.10 illustrate the algorithm. Starting from the root node A at the top
of the tree, we create an MIU for each child node a of A. We then attempt to split the MIUs
based on how similar the text of a is to the rest of the document d. That is, we first compute
the similarity measure for a using Equation 5.4.

similarity(a, d) =

∑
t wt,b1wt,b2√∑

t w
2
t,b1

∑
t w

2
t,b2

. (5.4)

In this equation, a is the child node in question, d is the document, and wt,bj is the weight
of term t in text block j, which is just the frequency of term t. The similarity measure
returns a value between 0 and 1, and is a quantitative measure of how similar a is to d. This
value is then compared against a threshold value δ. If similarity(a, d) < δ, then node a is
considered dissimilar enough from the document, and so the child remains its own MIU. If
similarity(a, d) > δ, then a is too similar to the document and is split into its children, so
the algorithm repeats this process on the child nodes of a. The program terminates when
there are no more child nodes left to repeat the process.

5.2 Proximity Scoring

A few formulas for proximity scoring are reported in papers by Hawking and Thistle-
waite [HT], Radev et al [RFQWG],and Clarke and [CC]. These formulas are very basic
and intuitive; they capture the notion of proximity by measuring the distance between terms
in the query, inverting the distance, and summing all the distances.

P(q,d) =
j∑

i=1

1

|σ(q,i)|
(5.5)

Here, q is the query, d is the document, j is the number of instances of the query words in the
document, and |σ(q,i)| is the number of words, or the distance, between the ith occurrence of
the query terms. To handle overlapping occurrences of the query words, an instance is only

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 24

Figure 5.9: Top down first examines the child nodes just below the head node.
The child nodes are compared in similarity to the head node using similarity
measure. The top down algorithm then checks whether similarity(a, d) < δ for
each node a.

Figure 5.10: The first iteration completes when top down determines that
similarity(a, d) > δ. Thus, the nodes are too similar to the head node, and
so the algorithm recursively repeats. In the second iteration, top down examines
the nodes at the next level down. The left side contains no children, so the pro-
cess ends and continues on the right side. Top down then considers the two lower
children, and the algorithm continues.

CHAPTER 5. OVERVIEW OF OUR THREE METHODS 25

considered if it has a unique starting point and is the shortest possible instance. Hawking
calls these occurrences spans. More formally, a span is a unique, shortest string of words
that contains all the query terms.

An example helps to elucidate the issue. The query terms for the following passage are
quick, brown, and fox.

The quick(1) brown(1)(2) fox(1)(2)(3) jumps over the lazy dog. The fast red bird
flew over the jumping fox(4). The shining white moon rises over the flying bird.
The quick(2)(3)(4) brown(3)(4) cow jumps over the rising moon.

The first span is labeled with (1), the second with (2), third with (3), and so on. Note how
(1), (2), (3), and (4) all have unique starting points. In this case, then:

|σ(q,1)| = 3
|σ(q,2)| = 27
|σ(q,3)| = 27
|σ(q,4)| = 13

Hawking et al evaluated a number of proximity scoring formulas and determined that
the best one uses a radical in the denominator.

P(q,d) =
j∑

i=1

1√
|σ(q,i)|

(5.6)

Using Equation 5.6, the proximity score for the passage above is 1.24.
Based on Hawking et al’s recommendation, we chose to use Equation 5.6 for our imple-

mentation of proximity scoring. For more details on our implementation see Section 7.2. For
our evaluation of proximity scoring, see Section 8.1 and Section 8.2.

Chapter 6

Testing

6.1 Query Testing

This chapter is an overview of the testing process. We give a detailed explanation of how we
tested our three methods. We explain how we selected our set of queries, and also how we
cached the pages for these queries. The process used in re-ranking is also explained. Finally,
we describe how humans made pairwise comparisons of pages on each given query, and how
we converted their results into an “ideal” human ranking of those pages.

6.1.1 Zipf’s Law

Zipf’s Law says when the frequencies of queries are ordered in decreasing order, then there
is a certain relationship. This relationship is shown in a log-log plot, where the vertical axis
shows the frequency of a given query, and the horizontal axis shows the queries ordered in
decreasing order of frequency. That is to say, the query with the highest frequencies would
be first, then the query with the second highest frequency, etc. If this plot follows Zipf’s
Law, then it will have a slope of −1, as shown in our sample plot in Figure 6.1.

Generally, queries entered into search engines follow Zipf’s Law. When a set of queries
follows Zipf’s Law, we can assume that it is representative of the web [zipfs].

6.1.2 Query List Generation

We used a total of fifty-eight queries in our precision testing, (Metric 1). Figure 6.2 lists
our queries. These queries were methodically picked from two sets: one generated by the
team, and another generated for us by Rosie Jones at Overture Services. Approximately ten
queries were initially picked from the team’s set, and fifty more were selected from Overture’s
set. The program we created to cache the pages did not account for instances where the
query returned less than 200 pages. We discarded one query for this reason, and a second
because of inappropriate content.

The reason why these queries were not randomly chosen from the two sets is that we
wanted the set of queries to be representative of the web. Hence, we made sure that these

26

CHAPTER 6. TESTING 27

Figure 6.1: This is a log-log plot of frequency of query versus the descending
order of frequencies of queries. This plot has a slope of −1, which means that
the set of queries is said to follow Zipf’s Law, and it is representative of the web.

queries followed Zipf’s Law, which is explained above. See Figure 6.1 for a Zipf’s Law plot
of our initial set of sixty queries. The slope is approximately −1.

6.1.3 Caching and Re-ranking the Pages

The top 200 web pages for each of our fifty-eight queries were locally cached. These pages
were run through each of our three methods. We took the union of the top ten returned
results for each of the three methods and Google. Precision testing was done on this set.
The number of web pages for each query ranged from sixteen to thirty-five web pages.

6.2 Human Testing

The team rated each of the fifty-eight queries for precision (Metric 1).
Also, in order to come up with the “ideal” human ranking for our relevance ordering

metric (Metric 2), we recruited human testers to rank web pages for thirty of the fifty-eight
queries. The testers were a total of twenty-eight Harvey Mudd College students, each of
whom worked for an hour on one or two queries.

6.2.1 Precision Testing (Metric 1)

Precision is calculated for a given query by taking the fraction of web pages returned from a
search engine that are deemed relevant by humans (see Section 4.2.1). For each of the fifty-
eight queries, the team went through the web pages, and scored each page as either relevant

CHAPTER 6. TESTING 28

a summary on world war one learn thai massage in thailand
always on top utility los molinos
bartender drinks mixed drink recipes lyrics eminem super man
blue mountain manual transmission near phase
boston apartments maternity scrubs
brand new rock mindstorm lego robotics
certification in housing motorola v120c phone accessories
cheap tech gear mystery party
church service nt administration helpdesk
colleges that offer training for private paint stick new inventions
contour pillow pokemon
cybernet ventures pretty sunset landscapes
eddie bauer infant car seat san luis obispo
elva corporation sebring headlight
fleet space museum calif sesame street cookie monster
forklift operator she loves me and veronica
free chess tactics sick building syndrome
front bumper star trekker
gender differences in education statistical language analysis
guitar hanger stand structural design context applications
harry potter sun city arizona tours to laughlin and vegas
health insurance companies of tampa bay

florida
super child model

health insurance probability and account-
ability act

terrorism iraq afghanistan

infectious diseases the actors gang
java the psychological corporation
john milton thomas the tank boco
jpeg cd burner slide show dvd player u.s.a olympic ice skating contenders
kingdom hearts 59 puppies un members
laptop cases world junior hockey

Figure 6.2: Above are fifty-eight of the initial sixty queries that we used in testing
for precision (two of the queries were filtered out). The words in bold are the
queries used in testing for relevance ordering.

CHAPTER 6. TESTING 29

or not relevant to the query. Two different people (on the team) rated the web pages for
each query. If a web page was given a relevant score by one or both of these people, then
the web page was deemed relevant for that query. Otherwise the web page was considered
irrelevant for that query. A screenshot of the program we used to rate web pages is given
below in Figure 6.3.

6.2.2 Testing for Relevance Ordering

In order to determine the relevance ordering for a given query, human testers made pairwise
comparisons of the web pages returned by our three methods and Google. Then for each
of the queries, these comparisons were plugged into a matrix. The Rayleigh Method was
then used to find a ranking vector. Kendall’s Tau was then applied to each of the ranking
vectors from the three methods and Google. Kendall’s Tau returned a score between −1
and 1, where the higher the number, the better the relevance ordering. For each query, up
to

(
n
2

)
comparisons are made, where n is the total number of web pages for that query (see

Section 4.2.1 and Section 4.2.2 for more details on our metrics).

6.2.2.1 Human Testing and Interface

Thirty out of the fifty-eight queries were randomly selected. This smaller set was checked to
ensure that it still followed Zipf’s Law(See Figure 6.1). Again, for each query, we took the
union of the top ten returned results for the three methods and Google. Then, we had this set
tested by humans for relevance ordering in order to create the “ideal” ranking vector. This
was done by taking all the returned pages for each query, and having them compared against
each other. A screenshot of the testing interface is shown in Figure 6.4. The results were then
plugged into a matrix, on which we ran the Rayleigh method to find the eigenvector of the
largest eigenvalues. The Perron-Frobenius Theorem was used here (Below is a description
of the Perron Frobenius Theorem). After this was done, we used Kendall’s Tau to compare
each of the three methods and Google to the “ideal” ranking vector (See Section 6.2.2.4).

6.2.2.2 Discussion of the Perron-Frobenius Theorem

The Perron-Frobenius theorem told us when there would be a unique solution when trying
to rank the web pages using the pairwise comparisons.

Theorem If the (nontrivial) matrix A has nonnegative entries, then there exists an eigen-
vector r with nonnegative entries, corresponding to a positive eigenvalue λ. Furthermore, if
the matrix A is irreducible, the eigenvector r has strictly positive entries, is unique and sim-
ple, and the corresponding eigenvalue is the largest eigenvalue of A in absolute value [Kee].

To understand when A is irreducible, we first define the idea of rows communicating with

CHAPTER 6. TESTING 30

Figure 6.3: This is a screenshot of the interface we used in order to score whether
or not a web page is relevant to a given query. In the top center of the interface
we have the buttons “relevant” and “not relevant”. When either of these are
clicked, then the program goes on to the next web page. This web page was
considered to be relevant by both raters for the query, “motorola v120 phone
accessories,” which is indicated in the top left corner. For a full explanation of
the user interface, see Section 7.5.

CHAPTER 6. TESTING 31

Figure 6.4: The above picture is a screenshot of the interface that we built in
order to allow testers to make pairwise comparisons. The query in this case is,
“pokemon,” which is written on the top left corner of the snapshot. The user is
able to flip back and forth between this page (Page B), and another page (Page
A). If Page A is more relevant to the query then the user clicks on the button
“Page A is Better”. Otherwise, “Page B is Better” is selected. When either of
these buttons are clicked, then the program goes on to the next comparison, and
continues on until most of the web pages for the query, “pokemon,” are compared.
For more details on the user interface, go to Section 7.5.

CHAPTER 6. TESTING 32

other rows.

Definition A Row i of matrix A communicates with row j if there exists a set of rows
R = r1, r2, r3, . . . rn such that A[i, r1] > 0, A[r1, r2] > 0, A[r2, r3] > 0, . . . A[rn, j] > 0.

For example, if A[3, 4] = 1 and A[4, 9] = .5 then we can say that row 3 communicates with
row 9. We say that A is irreducible if every row communicates with every other row.

We created an n×n matrix A, where A[i, j] = 1 if web page i was deemed more relevant
than web page j by human testings, and 0 otherwise. The Perron-Frobenius theorem tells us
that the web pages, which correspond to the rows, will be ranked and have a unique solution
corresponding to the largest eigenvalue, λ of |A| if A is irreducible.

6.2.2.3 Applying the Rayleigh Method

Keener explains that we can use the Rayleigh Method to find the eigenvector of the largest
eigenvalue of A, assuming the matrix A is irreducible. The Rayleigh Method states that

lim
n→∞

Anr0

|Anr0|
= r, (6.1)

for any nonnegative vector r0, where r⇀ is the eigenvector corresponding to the largest
eigenvalue. Applying the Rayleigh method without checking for irreducibility, we found
that the eigenvector returned for some queries had rows with scores of 0. We determined
that this was because the matrix was not irreducible; there were certain web pages that were
categorically more relevant than others, and so the communication criterion for irreducibility
did not hold. Knowing this, we partitioned A into matrices that were irreducible amongst
their own respective rows. This meant separately evaluating those rows who initially received
scores of 0 in the final eigenvector. Then, the rankings of these rows were appended to the
bottom of the rows from the original non-zero rankings. This method ran recursively to
ensure that all rows that received a zero score were ranked effectively. This final vector
represented the ideal human ranking that we so eagerly sought.

6.2.2.4 Applying Kendall’s Tau

We took the ranking from our modified version of the Rayleigh method and used it to find
Kendall’s Tau (See Section 4.2.3). For each query, each of the results from our three methods
and the algorithmic search engine results were re-indexed according to the order of our ideal
human ranking. Using Kendall’s Tau, we then computed the correlation between the ideal
human ranking and each of the four rankings.

The ithentry in the eigenvector corresponding to λ is the score of the ith page. Ordering
the web pages in descending order of their scores gives the “idea” human ranking.

Chapter 7

Programs and Source Code

Throughout the course of this project we wrote many programs to assist our project. While
the source code is self-documenting, this section presents a high-level overview of the code
– what it does, and what it does not do. Also, we identify the known bugs and issues, such
as ineffeciency.

The most significant programs are miuanalysis.exe and proxscore.pl to perform MIU
analysis and proximity scoring, respectively. These programs are implementations of the
theory discussed in Section 5.1 and Section 5.2, respectively. For these programs we present
excerpts from the source code in addition to describing the general behavior and identifying
any issues or bugs. The source code for miuanalysis.exe begins on page 39 and ends on
page 51. The source code for proxscore.pl begins on page 52 and ends on page 55.

For the other programs we only sketch their behavior and direct the interested readers
to the source code itself which is very comprehensive. The CD accompanying this report
contains the full source code.

7.1 MIU Analysis

Our MIU analysis program, miuanalysis.exe, performs MIU analysis on a web page using
either bottom up or top down MIU analysis. Concisely, miuanalysis.exe is a command line
program which takes an HTML file as input, and outputs the page with the MIUs delineated
by comments in the HTML. The program is written in ANSI C and uses the TidyLib HTML
parsing library [TidyLib] and the libmba data structure library [libmba]. Although we have
only compiled our program using Visual Studio .NET to the Win32 platform, the program
does not use any features exclusive to this platform. Consequently, porting the program to
the Linux platform or other platforms is both feasible and easy.

Using miuanalysis.exe is simple. The program has a few command line options, such
as the type of MIU analysis and the filename. It outputs the MIU analysis on STDOUT. It
also prints any extraneous information on STDERR.

usage: miuanalysis.exe type htmlfile [options]

type -td or --topdown for top down processing

33

CHAPTER 7. PROGRAMS AND SOURCE CODE 34

-bu or --bottomup for bottom up processing

htmlfile the file on which to perform MIU analysis

options

--config file or -cfg file where file is the path to the configuration file

The next sections describe the types of files used by miuanalysis.exe, known issues,
overall structure, and details of the bottom up and top down algorithms.

7.1.1 Files

There are four types of files used by miuanalysis.exe: configuration files, stoplist files,
HTML files, and MIU files.

7.1.1.1 Configuration Files

Configuration files indicate extra options for MIU analysis. They are text files that use key-
value statements of the form: key = value. Figure 7.1 shows the configuration file used in
our experiment for bottom up MIU analysis.

bu_root = html

minlength = 20

Figure 7.1: The configuration file bottomup.cfg used for bottom up MIU anal-
ysis. This file instructs bottom up analysis to use the <html> tag as the root
of the DOM tag tree and specifies the minimum MIU length is 20 words. The
minimum length requires that MIUs are at least x words, if possible.

In total, there are 11 possible keys, listed below.

verbose integer Controls the verbosity of the program. The possible val-
ues are 0 - 4. 0 prints no extra information, 4 prints all
possible extra information about the MIU analysis pro-
cess. All extra output is printed on STDOUT. The default
value is 1.

stemming string Controls the use of stemming in the program. A value
of yes always uses stemming; a value of no never uses
stemming. The default value is yes.

stoplist string Controls the file used as a stoplist. If this value is not
none then this option specifies the path to the stoplist file
to use. If the value is none then no stoplist is used. For
details on the stoplist file format, see the next section.
The default value is stoplist.txt.

CHAPTER 7. PROGRAMS AND SOURCE CODE 35

minlength integer This option specifies the minimum length of MIUs and is
currently only used by the bottom up algorithm. While
any positive integer value is legal, MIU analysis will only
produce valid results if this value is reasonable, i.e . The
default value is 5.

bu delta integer In Li et al’s algorithm, δ is the number of common display
elements two nodes must have for the bottom up algo-
rithm to merge them. We maintain Li et al’s notation,
and bu_delta controls this value for our implementation.
Any positive integer value is legal, although unreasonable
values generate unreasonable results. The default value,
which Li et al suggest, is 3.

bu omega integer In Li et al’s algorithm, ω is the number of common words
two nodes must have for the bottom up algorithm to
merge them as adjacent paragraphs. We maintain Li
et al’s notation, and bu_omega controls this value for
our implementation. Any positive integer value is legal,
although unreasonable values generate unreasonable re-
sults. The default value, which Li et al suggest, is 2.

bu lengthlast string With our modifications to Li et al’s algorithm, we added
a condition that MIUs must be of a minimum length.
Any value for this key signals the algorithm to apply
the length criterion after completing Li et al’s merging
criteria. If the key is not present, the algorithm applies
the length criteria first, before Li et al’s merging criteria.

bu root string There are three places the bottom up algorithm can start
MIU analysis. This option controls the location the al-
gorithm chooses. If the value is root then the algorithm
starts at the root of the DOM tree; if the value is html

then the algorithm starts at the <html> tag; and if the
value is body then the algorithm starts at the <body>
tag. The default value is root.

td delta float In the top down algorithm, the δ parameter determines
when the algorithm splits a node because it is too sim-
ilar to the overall document. The option td_delta cor-
responds to this top down parameter. Possible values
are floating point numbers between 0 and 1. The default
value is 0.40.

CHAPTER 7. PROGRAMS AND SOURCE CODE 36

td root string There are three places the top down algorithm can start
MIU analysis. This option controls the location the al-
gorithm chooses. If the value is root then the algorithm
starts at the root of the DOM tree; if the value is html

then the algorithm starts at the <html> tag; and if the
value is body then the algorithm starts at the <body>
tag. The default value is root.

7.1.1.2 Stoplist Files

Stoplist files are text files that list words for a stoplist. Text processing algorithms frequently
use stoplists to eliminate common words such as “the”, “a” and “and.” In our file, newline
characters seperate words. Lines that begin with the characters ! or #are comments. Thus,
the following file specifies a stoplist with five words, the, a, an, that, then.

Sample stoplist file.

the

a

an

but -- a commented word, and not included in the list

that

then

! there -- a commented word, and not included in the list

End sample stoplist file.

The program uses the stoplist file specified by the stoplist option in the configuration
file.

7.1.1.3 HTML Files

miuanalysis.exe can take in as input any HTML file, with a few exceptions which are
noted in Section 7.1.2.

7.1.1.4 MIU files

MIU files are the output of the miuanalysis.exe program. These files contain information
about the MIUs and their location within an HTML document.

7.1.2 Unresolved Issues

Unfortunately, miuanalysis.exe contains a number of flaws. While none of these inhibited
the program or the project, we identify and discuss them in this section, so that any future
developers will know what does not work or needs improvement.

The first flaw discussed is a problem with the TidyLib library and HTML file (Sec-
tion 7.1.2.1). The second flaw is a restriction on synonymous attributes in HTML file (Sec-
tion 7.1.2.2). The final flaw is an inefficiency in the MIU_GetText function (Section 7.1.2.3).

CHAPTER 7. PROGRAMS AND SOURCE CODE 37

7.1.2.1 HTML Parsing with Tidy

In virtually every case, the TidyLib library parsed the HTML file into an internal tag tree
structure. However, we identified two cases that caused the library to fail during parsing.
We hope the developers of the library will fix these bugs in future versions.

The first failure case occurred on page9.html from the query “health insurance proba-
bility and accountability act.” On this page, the first <html> tag declaration contained an
error. The line from the file that caused this error follows.

<HTML xmlns>

In this case, TidyLib attempted to get the value of the xmlns attribute. The internal call
returns a null value which the library does not catch, and the program fails. To address
this issue, we removed the xmlns attribute from the <html> tag in page9.html.

The second failure occurred on page52.html and page185.html for the query “health
insurance probability and accountability act.” These files contained an error for the style

attribute in various places. In particular, they had multiple HTML tags with two style
attributes, like the following excerpt from page52.html.

When TidyLib parses this input, it tries to concatenate the style attributes into a single
attribute. However, the library did not check for an empty second attribute and fails when
this occurs. In this case, we removed the offending style attribute from the two files.

7.1.2.2 Synonymous Attributes

One of the functions for Li et al’s bottom up MIU analysis algorithm required comparing
attributes between two nodes in the tag tree. In our implementation of this function, we do
not resolve synonymous attributes, that is, equivalent attributes that have multiple forms.
For example, the color attribute of a tag can be either the name of a color or a
hexadecimal value and the following tags have the same attributes.

Currently, our tag attribute comparison algorithm does not convert synonymous tags to
a common form. Hence, although Li et al’s algorithm suggests that those tags should have
two common attributes, our function only performs a textual comparison of the attribute
values and determines the tags have only one common attribute. This limitation is noted in
the comment preceding the MIU_BU_DisplaySimilarity function (in bu_eval.c).

The most recent versions of TidyLib contain details on mapping between textual colors
and their hexadecimal equivalents. Any improvements could use this functionality to resolve
synonymous attributes, at least in the case of colors.

CHAPTER 7. PROGRAMS AND SOURCE CODE 38

7.1.2.3 Inefficient Memory Usage in MIU GetText

While we made every attempt to keep miuanalysis.exe as efficient as possible, one of the
major deficiencies is the MIU_GetText function (from mius.c). This function retrieves the
text for an MIU node and caches the result. In order to quickly code this function, we used
a simple recursive descent and concatenation algorithm to build the text. Consequently,
the MIU_GetText function dynamically allocates and frees portions of memory, which are
potentially large

While this works well for bottom up MIU analysis – after the first call, all of the subse-
quent calls are cached – it is inappropriate for our top down MIU analysis algorithm. We
were unable to cache the results for undifferentiated MIUs, that is, what the top down al-
gorithm tries to split. Each node, then, must be visited many times to get the appropriate
text in top down MIU analysis.

A better implementation of the function would retrieve the text of the entire document
into a single buffer. Each node would then store pointers to its portion of the global buffer.
TidyLib uses this method internally. In particular, this method would greatly simplify
concatenation of adjacent nodes, which frequently occurs in bottom up MIU analysis. Instead
of allocating a new block of memory, the concatenated node simply stores the start pointer
from the first node and the end pointer from the second node.

7.1.3 Overall Structure

In this section, we outline the overall structure of the source code for miuanalysis.exe.
The intention is to explain the internal structure of the program to make reading and com-
prehending the code easier.

The source code for miuanalysis.exe is divided into discrete units. These units are
largely independent building blocks. The main programs and algorithm combine these build-
ing blocks into the full program. There are four key units in the code.

• text - This unit includes functions to compute textual similarity, stem words, and
manage a stoplist.

• miu - The main MIU unit which contains functions to create, delete, merge, and analyze
MIUs.

• miu_bu - The bottom up MIU analysis unit. This unit heavily uses the miu unit and
only contains one function to apply the bottom up algorithm to a web page.

• miu_td - The top down MIU analysis unit. This unit is analogous to the miu_bu unit
for the top down algorithm.

Units in the code can contain private functions that are not globally available. In many
cases, we accomplish this using the static modifier, such as for the text unit. In other
cases, there are private internal header files, such as for the miu_bu and miu_td units.

Functions that belong in a unit contain the unit name in their function name. For
example, the function MIU_GetText retrieves the text for an MIU and is in the miu unit.
Likewise, the function TEXT_Stem stems a word and is in the text unit.

CHAPTER 7. PROGRAMS AND SOURCE CODE 39

The unit name of a function determines which file it is defined in. For example, functions
in the text unit are defined in text.c and prototyped in text.h.

The next two sections show how the bottom up and top down algorithms use the unit
structure to merge and split MIUs.

7.1.4 Bottom Up

The bottom up MIU analysis algorithm is explained in Section 5.1.2. In this section, we
discuss the critical code path for bottom up MIU analysis. This path involves the functions
MIU_BU_BuildMIUs and ConstructMIUs_LengthFirst in bu_build.c. The documentation
on these functions in largely inline with the code and reproduced below. MIU_BU_BuildMIUs
calls the function BuildMIUsAtDepth which recurses down the tag tree until it reaches the
desired depth. It then calls ConstructMIUs_LengthFirst on each node at that depth.

Our major deviation from Li et al’s algorithm is our minimum length criteria. We first
merge adjacent nodes together until the merged nodes are greater than the value in the
min_length variable. This corresponds with step 0 in the ConstructMIUs_LengthFirst

function. Li et al’s merging equations, Equations 5.1, 5.2, and 5.3, correspond to the func-
tions HeaderAndContent, HeaderAndContentPair, and AdjacentParagraphs, respectively.

There is one non obvious aspect about the code. Although the ConstructMIUs function
contains syntax which implies an infinite loop, this does not occur because the final statement
of the loop iteration causes the loop to end.

for(itr = 0; itr >= 0; itr++)

{

...

break;

}

The two functions MIU_BU_BuildMIUs and ConstructMIUs_LengthFirst are reproduced
below.

The code listing ends on page 46.

1 /*
* MIU_BU_BuildMIUs applies the algorithm from Li et al+ to merge MIUs.
*
* + see Xiaoli Li, Tong-Heng Phang, Minqing Hu, and Bing Liu. Using micro

5 * information units for Internet search. In Proceedings of the Eleventh
* International Conference on Information and Knowledge Management,
* pages 566573. ACM Press, 2002.
*
* input:

10 * tdoc - the tidy document for the webpage
* root - the root of the miu tree
*
* output:
* root - the revised miu tree where the mius are the leaf nodes

15 *
* returns:

CHAPTER 7. PROGRAMS AND SOURCE CODE 40

* TRUE for success, FALSE for failure
*/

20 BOOL MIU_BU_BuildMIUs(IN TidyDoc tdoc, IN OUT miu_node_t *root)
{

int tree_depth = 0;
int depth = 0;
BOOL rval = TRUE;

25 int value = 0;
bu_stats_t stats = {0};
char val_buffer[STRING_SHORT];

// parameter validation
30 assert(tdoc);

assert(root);

if (!tdoc || !root)
{

35 debug_printf(DEBUG_EXTENSIVE, "invalid parameters to MIU_BU_BuildMIUs\n");
return (FALSE);

}

// retrieve values of delta and omega from the config file
40 [excluded from the listing...]

//
// since this is a bottom-up algorithm, the analysis starts by examining
// all of the lowest level of the tree

45 //

tree_depth = MIU_TreeDepth(root);
debug_printf(DEBUG_EXTENSIVE, "tree depth %i\n", tree_depth);

50 for (depth = tree_depth - 1; depth > 0; depth--)
{

debug_printf(DEBUG_EXTENSIVE, "building MIUs for level %i\n", depth);
if (!BuildMIUsAtDepth(tdoc, root, depth, &stats))
{

55 error_printf(ERR_MIU_BUILD_FAILED_DEPTH, depth);
rval = FALSE;
break;

}
}

60
debug_printf(DEBUG_BASIC, "number of length mergings: %i\n"

"number of header mergings: %i\n"
"number of paragraph mergings: %i\n",

stats.num_length, stats.num_header, stats.num_paragraph);
65

return (rval);
}

/*

CHAPTER 7. PROGRAMS AND SOURCE CODE 41

70 * ConstructMIUs_LengthFirst applies the merging algorithm which does
* four things:
*
* 0. Merge all nodes of insufficient length.
* 1. Merge header and content paragraphs (as adjacent nodes in the tree).

75 * 2. Merge adjacent text paragraphs.
* 3. Merge singleton children with their parents.
*
* THIS CAN ONLY RUN IF ALL THE NODES ARE LEAF NODES.
*

80 * This is the length first merging algorithm. See ConstructMIUs_LengthLast
* for a version that moves the length merging to the end of the algorithm.
*
* input:
* tdoc - the tidy document, this is needed to get the node text

85 * node - a single node at the merge level
* stats - a statistics structure to count the applications of the various
* merging criteria
*
* output:

90 * node - node is not guaranteed to be valid after the call
* stats - the updated statistics structure with all the mergings from the
* current call and all recursive calls
*
* returns:

95 * TRUE for success, FALSE for failure
*/

static BOOL ConstructMIUs_LengthFirst(IN TidyDoc tdoc, IN OUT miu_node_t *node,
IN OUT bu_stats_t* stats)

100 {
BOOL rval = FALSE;
int itr = 0;

// parameter validation
105 assert(tdoc);

assert(node);
assert(stats);

//
110 // 0. Check MIU length for automerge, but we need at least 1 sibling

//
if (MIU_SiblingCount(node) > 0)
{

miu_node_t *mn = node;
115 int length = 0;

while (mn)
{

// check if the MIU is too short
120 if (linkedlist_is_empty(mn->child_miunodes) &&

MIU_BU_TextLength(tdoc, mn, &length) &&
length <= min_length)

CHAPTER 7. PROGRAMS AND SOURCE CODE 42

{
if (mn->next && linkedlist_is_empty(mn->next->child_miunodes))

125 {
// handle on special case
if (mn == node)
{

if (!MIU_MergeAdjacent(mn, mn->next, &node))
130 {

return (FALSE);
}

// set mn to the new merged node.
135 mn = node;

}
else
{

if (!MIU_MergeAdjacent(mn, mn->next, &mn))
140 {

return (FALSE);
}

}
}

145 else if (mn->prev && linkedlist_is_empty(mn->prev->child_miunodes))
{

// again, we have to handle to case where
// mn->prev == node

150 if (mn->prev == node)
{

if (!MIU_MergeAdjacent(mn->prev, mn, &node))
{

return (FALSE);
155 }

mn = node;
}
else

160 {
if (!MIU_MergeAdjacent(mn->prev, mn, &mn))
{

return (FALSE);
}

165 }
}
else
{

// in this case, it’s a singleton node
170 // because of merging, so break out

break;
}

// we need to make sure this node is long enough too
175 // so we don’t want to step the node

CHAPTER 7. PROGRAMS AND SOURCE CODE 43

//
// note that this continue refers to the
// the while(nm) loop over the automerge length nodes
stats->num_length++;

180 continue;
}

// step the node
mn = mn->next;

185 }
}

if (!VerifyLeafNodes(node))
{

190 // this is simple, because the algorithm doesn’t apply when
// all the nodes are not leaf nodes
return (TRUE);

}

195 //
// count the number of iterations
// all continue statement should refer to THIS loop
//

200 for (itr = 0; itr >= 0; itr++)
{

//
// 1. Merge header and content paragraphs.
//

205 if (node->next)
{

miu_node_t *mna = node;
miu_node_t *mnb = node->next;
// we need to make sure the "next" node was valid.

210
if (MIU_SiblingCount(mnb) == 1 &&

HeaderAndContent(tdoc, mna, mnb))
{

// if there are only two nodes, which are a header and content,
215 // then merge them.

if (!MIU_MergeAdjacent(mna, mnb, &node))
{

return (FALSE);
}

220
stats->num_header++;

}
else if (HeaderAndContent(tdoc, mna, mnb))
{

225 // if there are any nodes c/d such that
// displaySimilarity(A, C) >= delta &&
// displaySimilarity(B, D) >= delta, then
// merge A, B, and all such C, D.

CHAPTER 7. PROGRAMS AND SOURCE CODE 44

miu_node_t *mnc = mnb->next;
230 miu_node_t *mnd = NULL;

BOOL merge_ab = FALSE;

while (mnc)
{

235 mnd = mnc->next;
if (mnd)
{

if (HeaderAndContentPair(tdoc, mna, mnb, mnc, mnd))
{

240 merge_ab = TRUE;

debug_printf(DEBUG_VERBOSE, "merging MIU {%s} ",
MIU_PrintNode(tdoc, mnc));

debug_printf(DEBUG_VERBOSE, "{%s} hc\n",
245 MIU_PrintNode(tdoc, mnd));

if (!MIU_MergeAdjacent(mnc, mnd, &mnc))
{

return (FALSE);
250 }

stats->num_header++;
}
else

255 {
// move onto the next pair
mnc = mnd;

}
}

260 else
{

// change mnc so we terminate
mnc = NULL;

}
265 }

if (merge_ab)
{

debug_printf(DEBUG_VERBOSE, "merging MIU {%s} ",
270 MIU_PrintNode(tdoc, node));

debug_printf(DEBUG_VERBOSE, "{%s} hc\n",
MIU_PrintNode(tdoc, mnb));

if (!MIU_MergeAdjacent(node, mnb, &node))
275 {

return (FALSE);
}

stats->num_header++;
280 }

}

CHAPTER 7. PROGRAMS AND SOURCE CODE 45

}

//
285 // 2. Merge adjacent text paragraphs

//
if (node->next)
{

miu_node_t *mnx = node;
290 miu_node_t *mny = node->next;

BOOL merged = FALSE;

while (mny)
{

295 if (AdjacentParagraphs(tdoc, mnx, mny))
{

debug_printf(DEBUG_VERBOSE, "merging MIU {%s} ",
MIU_PrintNode(tdoc, mnx));

debug_printf(DEBUG_VERBOSE, "{%s} hc\n",
300 MIU_PrintNode(tdoc, mny));

if (!MIU_MergeAdjacent(mnx, mny, &mny))
{

return (FALSE);
305 }

stats->num_paragraph++;

merged = TRUE;
310

break;
}

// increment the nodes
315 mnx = mny;

mny = mny->next;
}

// if there was a merging, restart the process and
320 // let’s try it again!

if (merged)
{

continue;
}

325 }

//
// 3. Merge singleton children with their parents.
//

330
// a sibling count of 0 indicates NO siblings, i.e. a singleton node
if (MIU_SiblingCount(node) == 0)
{

debug_printf(DEBUG_VERBOSE, "merging MIU {%s} up\n",

CHAPTER 7. PROGRAMS AND SOURCE CODE 46

335 MIU_PrintNode(tdoc, node));
MIU_MergeUp(node);

}

340 rval = TRUE;
break;

}

return (TRUE);
345 }

7.1.5 Top Down

The top down MIU analysis algorithm is explained in Section 5.1.3. In this section, we
discuss the critical code path for top down MIU analysis. This path involves the functions
MIU_TD_BuildMIUs and SplitMIUs.

The function SplitMIUs recursively divides the tag tree into MIUs. While the docu-
mentation indicates that the code implements the dual threshold top down MIU analysis
algorithm, see Section 10.2.1, the actual implementation is of the original top down algo-
rithm.

One interesting notes about the code follow. The algorithm uses the TEXT_Similarity

function to compute the similarity metric described by Equation 5.4. That function takes
two hashtables which contain a word to frequency map. The result is a floating point value
from 0.0 to 1.0 describing the similarity between the two text passages.

We reproduce the two functions MIU_TD_BuildMIUs and SplitMIUs below.
The code listing ends on page 51.

1 /*
* MIU_TD_BuildMIUs constructs MIUs for the tag tree using the top down
* algorithm.
*

5 * input:
* tdoc - the tidy document
* root - the root miu or document node
*
* output:

10 * root - the root document node with MIUs created at child levels
*
* returns:
* TRUE for success, FALSE for failure
*/

15
BOOL MIU_TD_BuildMIUs(IN TidyDoc tdoc, IN OUT miu_node_t *root)
{

// variables
const char *doctext = NULL;

20 BOOL rval = FALSE;

CHAPTER 7. PROGRAMS AND SOURCE CODE 47

// check parameters
assert(tdoc);
assert(root);

25
if (!tdoc || !root)
{

return (FALSE);
}

30
// load values for delta and epsilon
[excluded from listing...]

// get the document text
35 if (MIU_GetText(tdoc, root, &doctext, NULL))

{
struct hashmap *docfreq = NULL;
int totalwords = 0;

40 if (TEXT_WordFrequencies(doctext, &docfreq, &totalwords))
{

td_stats_t stats = {0};

rval = SplitMIUs(tdoc, root, docfreq, &stats);
45

hashmap_del(docfreq);
}

}

50 return (rval);
}

/*
* SplitMIUs performs the top down splitting algorithm. The algorithm

55 * on node A works as follows:
*
* For each child a of node A, construct an MIU node for a and
* compute the text similarity between a and the document.
*

60 * (1) if sim(a) > delta, call SplitMIUs(a) and continue.
* (2) if sim(a) < delta, sim(a) > epsilon, then continue.
* (3) if sim(a) < epsilon, then check if the similarity between
* a and either of its neighbors is greater than delta,
* if so, merge a and its neighbor.

65 *
* input:
* tdoc - the tidy document
* node - the MIU node
* docfreq - the frequency of words in the document

70 * stats - the splitting statistics
*
* output:
* node - the MIU node with child MIUs constructed
* stats - the updated splitting statistics

CHAPTER 7. PROGRAMS AND SOURCE CODE 48

75 *
* returns:
* TRUE for success, FALSE for failure
*/
static BOOL SplitMIUs(IN TidyDoc tdoc, IN OUT miu_node_t *node,

80 IN struct hashmap *docfreq, IN OUT td_stats_t *stats)
{

BOOL rval = TRUE;
TidyNode tnode = NULL;
TidyNode tchild = NULL;

85
assert(tdoc);
assert(node);
assert(docfreq);
assert(stats);

90
//
// first, segment the children into MIUs
//

95 tnode = linkedlist_get(node->tnodes, 0);
if (!tnode)
{

error_printf(ERR_NO_NODE_IN_LINKEDLIST);
return (FALSE);

100 }

for (tchild = tidyGetChild(tnode); tchild; tchild = tidyGetNext(tchild))
{

miu_node_t *mnode = MIU_NewMIUNode();
105 if (mnode)

{
// set the parent
mnode->parent = node;

110 // add the child tnode to the decendent
// add the decendent to the list of children
if (linkedlist_add(mnode->tnodes, tchild) &&

linkedlist_add(node->child_miunodes, mnode))
{

115 rval = TRUE;
}
else
{

error_printf(ERR_APPEND_NODE_FAILED);
120 rval = FALSE;

break;
}

}
else

125 {
error_printf(ERR_NODE_ALLOC_FAILED);
rval = FALSE;

CHAPTER 7. PROGRAMS AND SOURCE CODE 49

break;
}

130 }

// now we need to assign next/prev pointers in the MIUs
if (rval && !linkedlist_is_empty(node->child_miunodes))
{

135 // assign next/prev pointers to children, but only if
// there is at least one child node
miu_node_t* prev = NULL;
miu_node_t* cur = NULL;
miu_node_t* next = NULL;

140
// assign prev pointers
linkedlist_iterate(node->child_miunodes);
prev = linkedlist_next(node->child_miunodes);

145 for (cur = linkedlist_next(node->child_miunodes);
cur; prev = cur, cur = linkedlist_next(node->child_miunodes))

{
cur->prev = prev;

}
150

// now cur is null, but prev was the last valid element
next = prev;

// look backwards through the chain to assign next pointers
155 while (cur = next->prev)

{
cur->next = next;
next = cur;

}
160 }

//
// now we iterate over the child_miunodes
//

165
if (rval)
{

miu_node_t *child = NULL;
linkedlist_iterate(node->child_miunodes);

170 while (child = linkedlist_next(node->child_miunodes))
{

//
// compute the similarity between the child
// and the document

175 //

const char *text = NULL;
struct hashmap *childfreq = NULL;

180 if (MIU_GetText(tdoc, child, &text, NULL) && text &&

CHAPTER 7. PROGRAMS AND SOURCE CODE 50

TEXT_WordFrequencies(text, &childfreq, NULL))
{

float sim = TEXT_Similarity(docfreq, childfreq);

185 //
// apply condition (1)
//
// if sim >= delta, recurse if the child has sufficent words to
// be it’s own MIU.

190 //

if (sim >= delta)
{

rval = SplitMIUs(tdoc, child, docfreq, stats);
195 }

//
// apply condition (2)
//

200 // if sim < delta && sim >= epsilon, then this
// node is the final miu
//
// currently unimplemented
//

205
/*else if (sim < delta && sim >= epsilon)
{

rval = TRUE;
}*/

210
//
// apply condition (3)
//
// if sim < epsilon, then look for an adjacent node

215 //

else
{

// TODO
220 // fix this to do the full adjacent search

rval = TRUE;
}

225 if (childfreq)
{

hashmap_del(childfreq);
}

230 if (!rval)
{

break;
}

CHAPTER 7. PROGRAMS AND SOURCE CODE 51

}
235 }

}

return (rval);
}

7.2 Proximity Scoring

We implemented the proximity scoring algorithm in the perl script proxscore.pl. For the
theory behind proximity scoring, see Section 5.2. Like miuanalysis.exe, proxscore.pl is
a command line program that reads an HTML file and outputs a proximity score. While
we only tested the script on a Win32 platform, as a generic perl script the program should
work on any platform that implements the perl language.

Usage of proxscore.pl is completely command line driven and fairly complicated. In the
most basic mode, the script reads from a HTML file specified in a command line argument
and outputs the final proximity score on STDOUT. The program’s built in usage summary
provides a good starting point.

perl proxscore.pl htmlfile query [options]

htmlfile - the html file to retrieve the score for

query - a single quoted parameter with the query words, words should be

seperated by spaces

options:

Help and Debugging

-h, --help print this usage information

-v, --verbose each time this option appears, increase the verbosity

level of the output

Algorithm Parameters

-c, --cutoff=n sets the maximum span length to n

-stem, --stemming forces stemming

-nostem, --nostemming forces no stemming

-stop, --stoplist=FILE sets stoplist to FILE,

if FILE is "none" then do not use a stoplist

-f, --function=PERLFUNC sets the option function to the perl function

determined by PERLFUNC, i.e. "sub { $_[0] }"

for the identify function.

Defaults

- Does not use a cutoff

CHAPTER 7. PROGRAMS AND SOURCE CODE 52

- Uses stemming

- Uses stoplist.txt for the stoplist, otherwise, no stoplisting

- Uses f(x) = sqrt(x) as the option function

Unlike miuanalysis.exe, proxscore.pl requires a query to work. The query and the
path to an HTML file are the only required options for proximity scoring. The most inter-
esting optional argument is the function. This changes the function used to modify the raw
span length. Consequently, Equation 7.1, the equation used in the code which uses f(|σi|),
differs from Equation 5.6.

proximity score =
total spans∑

i=1

1

f(|σi|)
(7.1)

The default option function is f(x) =
√

x as noted in the comments. However, the
program interprets any perl function provided on the command line. For example, the
following command uses the function f(x) = log2(x) in Equation 7.1 on the HTML file
myhtmlfile.html with query book reviews.

perl proxscore.pl myhtmlfile.html "book reviews"

"--function=sub { log($_[0])/log(2) }"

One caveat to the proxscore.pl script is that it requires three custom modules: debug,
stemming, and proximity. These packages are in a different directory, perl_common, and
the proxscore.pl script does not try to dynamically add that directory to the library or
package include path.

Using perl, the critical components of the implementation are concise. The main functions
in the program are ProximityScore_SpanBasic and Proximity::GetQueryWordSpan in the
proximity module. The ProximityScore_SpanBasic computes the proximity score using
Equation 7.1 from the spans returned by GetQueryWordSpan.

We reproduce the two functions ProximityScore_SpanBasic and GetQueryWordSpan

below. The code listing ends on page 55.

1 #
ProximityScore_SpanBasic
#
Compute a basic span proximity score. That is, calculate

5 #
total_spans

\ 1
) -----------------

10 # / f(span_length(i))

i = 0
#
where total_spans is the total number of spans in the text block and

15 # a span is a block of text with a unique starting point which contains
all the words in the query. The function f(x) is a function used to
modify the result.

CHAPTER 7. PROGRAMS AND SOURCE CODE 53

#
usage: $score = ProximityScore_SpanBasic($query_aref, $words_aref, [%opts])

20 # $query_aref - a reference to the list of words in the query
$words_aref - a reference to the list of words in the text
$opts - an optional hash containing optional values. Valid entires are
f - a reference to a function to use for modify the result,
this is the identify function if not specified

25 # cutoff - the cutoff value to use
#
returns:
$score - a floating point proximity score
#

30
sub ProximityScore_SpanBasic
{

my $query_aref = shift @_;
my @nextwordlist = @{shift @_};

35
my %opts = @_;

my $fref = $opts{"f"};
if (!defined($fref))

40 {
$fref = sub { sqrt($_[0]) };

}

my $score = 0.0;
45

while (@nextwordlist)
{

my ($nextwordlist_aref, $span_aref) =
Proximity::GetQueryWordSpan($query_aref,

50 \@nextwordlist, $opts{"cutoff"});

@nextwordlist = @{$nextwordlist_aref};
my @span = @{$span_aref};

55 if (@span)
{

$score += 1/&$fref(scalar(@span));

Debug::print_extensive("span: ", join (" ", @span), "\n");
60 }

}

return ($score);
}

65
#
GetQueryWordSpan
#
retrives the first and shortest span of text that contains all of the query

70 # words starting at the first word in the input list of words

CHAPTER 7. PROGRAMS AND SOURCE CODE 54

#
usage: ($nextwordlist_aref, $span_aref) =
GetQueryWordSpan($query_aref, $wordlist_aref, [$max_cutoff])
$query_aref - a reference to the query as an array of words

75 # $wordlist_aref - a reference to the words of the text as an array of words
$max_cutoff - an optional parameter giving the maximum length of the span
if this is omitted, there is no maximum length
#
returns:

80 # $nextwordlist_aref - a reference to the word list after all words up to
and including the first query word were removed, this
array is empty if no words in the query were found
$span_aref - a reference to the words in the span, if not all of the words
in the query appeared, or the cutoff was hit, this has

85 # length 0
#

sub GetQueryWordSpan
{

90 my @query = @{shift @_};
my @words = @{shift @_};

my $cutoff = shift @_;
if (!defined($cutoff))

95 {
$cutoff = POSIX::INT_MAX;

}

define our variables
100 my @span;

my @nextwordlist;
my $first_word = 0;

while (scalar(@words) > 0 && scalar(@query) > 0 && $cutoff > 0)
105 {

get the current word and iterate to the next one
my $word = shift @words;

if ($first_word)
110 {

if we have seen the first word, save the span, and decrement
the cutoff value
push @span, $word;
$cutoff--;

115 }

run through all query words to see if any of them occur
my $qword_index = 0;
foreach my $qword (@query)

120 {
if ($word eq $qword)
{

make sure we start saving everything from this point, unless

CHAPTER 7. PROGRAMS AND SOURCE CODE 55

it has already been set and saved
125 if (!$first_word)

{
$first_word = 1;
push @span, $word;

130 # save this pointer
@nextwordlist = @words;

}

remove this word from the query
135 splice (@query, $qword_index, 1);

}
$qword_index++;

}
}

140
test and see why we terminated
if (scalar(@query) > 0)
{

here, we didn’t see all the terms, so don’t return anything in
145 # the span

splice (@span);
}

return (\@nextwordlist, \@span);
150 }

7.3 Query Retrieval

There are two steps to retrieving the pages for a query. The first step is retrieving the data
from the algorithmic search engine. In our implementation, we use the publicly available
Google SOAP interface. We describe this program in Section 7.3.1. The second step is
retrieving and locally caching images and other server-stored material. See Section 7.3.2 for
our implementation.

Warning While all the programs involved in query retrieval are implemented in perl,
we may have used directory separators specific to the Win32 platform. Please check this
problem before running these scripts on any non Win32 platform.

The source code to perform query retrieval is in the soap_queries directory.

7.3.1 Google SOAP

Our program to retrieve queries is soap_queries.pl. This program requires a query from
the command line and optionally, the number of pages to retrieve. The first sample command
retrieves the top 200 pages for the query “book reviews” and the second sample command
retrieves the top 140 pages for the query “book reviews.”

CHAPTER 7. PROGRAMS AND SOURCE CODE 56

perl soap_queries.pl "book reviews"

perl soap_queries.pl "book reviews" 140

For the rest of this section, “book reviews” is the example query.
The first thing soap_queries.pl does is to create a subdirectory of ..\Query_Results\

with the query name. In our example, it creates ..\Query_Results\bookreviews\. The
program then begins retrieving pages from Google using their SOAP web service interface.
The results directory is determined by the program variable $results_dir.

The program next creates a file with the query name in that directory. For the example
query, it will create the file ..\Query_Results\book reviews\book reviews.txt. Even-
tually, this file will contain the list of local pages and their original URLs. Each line of this
file contains two tab-delimited entries, local page name and original URL, in the following
format.

local_page_name URL

One quirk about the Google SOAP interface is that a single query will return no more than
10 results. Consequently, to get 200 results, the program must perform 20 queries. The pro-
gram controls the total number of pages it retrieves with the variable $max_cached_results.

Our algorithm to retrieve the pages only counts a page if Google has a cached copy of
the page. We used this approach to minimize the potential difference between the web
page as indexed by Google and the live version of the page. If Google has a cached
copy of the page, the algorithm retrieves the page, strips Google’s header, and stores it
in the file page%i.html where %i is the current zero-indexed result number. So, for the
5th page on the query “book reviews”, the algorithm would place the HTML for that
page in ..\Query_Results\book reviews\page4.html. After locally storing the HTML,
soap_queries.pl calls our image caching script cache_images.pl. The program repeats
this process for each of the pages retrieved.

7.3.2 Image Caching

Our program for locally caching images is cache_images.pl. The program has two required
options. The first is the local HTML file name, the second is the original URL of the page.
In the sample command, cache_images.pl will cache page10.html which had the original
URL http://www.yahoo.com.

perl cache_images.pl ".\query\page10.html" "http://www.yahoo.com"

The first step of the algorithm is to create a directory for locally cached images. Our
program creates a name for this directory by appending _cache to the base form of the file
name. For our example, the program would create the directory .\query\page10_cache\.

Next, the script parses the HTML using the HTML::Transform library [NF-HTML]. Us-
ing this library, we specify a perl function to call for each occurrence of a specific HTML
tag in the file. We created handlers for the tags , <image>, <link>, and <base>.
The base function, called when the library encounters a <base> tag, stores the value of the
href attribute to replace the URL passed on the command line. It then removes the href

attribute from the <base> tag.

CHAPTER 7. PROGRAMS AND SOURCE CODE 57

For , <image>, and <link>, we simply store the file referenced by the href

attribute in the cache directory and update the href attribute to point to the locally cached
file.

The program stores the result of this transformation in a file. In our example, the file is
.\query\page10_cache.html. In general, the file name is formed by appending the string
_cache to the base file name.

While this procedure works successfully on many web pages, we encountered two prob-
lems. First, many web pages store content in other tags. Other web pages store image refer-
ences in JavaScript. Handling all of these cases was beyond the scope of this program. In or-
der to cache these pages cache_images.html stores another version of the file with a <base>
tag pointing toward the original URL. This file is called .\query\page10_base.html.

The second problem is that the HTML::Transform library did not robustly handle all
pages. HTML is not a rigid specification. However, the failures in the HTML::Transform li-
brary were caused by tag balance problems. To fix this behavior, we removed the code for tag
balancing from the HTML::Transform library. The changes are noted in the Transform.pm

file in the soap_queries directory.

7.4 Re-ranking

As described in Section 4.1.2, we have two algorithms for re-ranking. The code for our
implementation of these algorithms is in the rerank directory. In this section we only
present a usage guide to these programs. Please see the CD accompanying this report for
the full source code listing. With the description of the algorithms from Section 4.1.2 and
the comments in the code, the code is easy to understand.

These programs are portable to any platform that implements perl.

7.4.1 MIUs

Our program for MIU re-ranking is rerank_miu.pl which implements the theory described
in Section 4.1.2.1. The program requires three options: a directory full of web pages, a query,
and a type of MIU analysis.

perl rerank_miu.pl webpages_dir query td|topdown|bu|bottomup [options]

webpages_dir - The directory with web pages. This directory needs to

contain files of the form page#.html, where # is a number.

Also, it needs to contain a file named "query.txt" where

query is the option below which contains page to url

mappings.

query - a single quoted parameter with the query words, words should be

separated by spaces

type - either td, topdown for top-down analysis or bu, bottomup for

bottom-up MIU analysis

CHAPTER 7. PROGRAMS AND SOURCE CODE 58

options:

Help and Debugging

-h, --help print this usage information

-v, --verbose each time this option appears, increase the verbosity

level of the output

Parameters

-p, --prog=STRING use STRING as the command for miu analysis program

-a, --args=STRING give STRING as the command line arguments to the

miu analysis program (prog)

-c, --cache use cached MIUs if available, creates a cache otherwise

-noc, --nocache force creation of new MIUs

-l, --log log the miuanalysis results for each file

-nol, --nolog do not log the miuanalysis results for each file

Defaults:

- Uses "miuanalysis.exe" the command for miu analysis

- Uses no additional command line arguments

- Uses cached MIUs if available, otherwise, creates them with names

like page01.td.miu (for top down miuanalysis) in the webpages_dir

directory. The files are assumed to be in the correct format.

- Uses logging

The usage description explains all the options. The command lines used for our bottom
up and top down MIU re-ranking follow (see rerankmius_bu.bat and rerankmius_td.bat).
The batch file interpreter replaces the %query% token with the actual query.

perl rerank_miu.pl "..\Query_Results\%query%" "%query%" bu

-a "-cfg bottomup.cfg"

perl rerank_miu.pl "..\Query_Results\%query%" "%query%" td

-a "-cfg topdown.cfg"

In the first case, we perform bottom up re-ranking using caching and logging using
miuanalysis.exe (the default) and the command line argument -cfg bottomup.cfg directs
miuanalysis.exe to use the bottomup.cfg configuration file for miuanalysis.exe (see
Section 7.1.1.1). In the second case, we perform top down MIU analysis with the same options
but using the topdown.cfg configuration file instead. Using these command templates, we
re-rank our “book reviews” using bottom up MIU analysis with the following command.

perl rerank_miu.pl "..\Query_Results\book reviews" "book reviews" bu

-a "-cfg bottomup.cfg"

The rerank_miu.pl script writes its output to STDOUT. The output of the program is a
line for each page. Each line contains four tab (\t) delimited entries.

CHAPTER 7. PROGRAMS AND SOURCE CODE 59

rank local_html_file miu_window_size url

• rank is the zero-indexed rank of local_html_file.

• local_html_file is the name of the local page, e.g. page5.html

• miu_window_size is the number of MIUs required to contain all the query terms.

• url is the original URL of the file.

7.4.2 Proximity Scoring

Our program for proximity score re-ranking is rerank_prox.pl which implements the theory
described in Section 4.1.2.2. The program requires two options, a directory full of web pages
and a query.

perl rerank_prox.pl webpages_dir query [options]

webpages_dir - The directory with web pages. This directory needs to

contain files of the form page#.html, where # is a number.

Also, it needs to contain a file named "query.txt" where

query is the option below which contains page to url

mappings.

query - a single quoted parameter with the query words, words should be

seperated by spaces

options:

Help and Debugging

-h, --help print this usage information

-v, --verbose each time this option appears, increase the verbosity

level of the output

Parameters

-b, --bins=n use n bins for reranking.

-p, --prog=STRING use STRING as the command for proximity scoring

program

-a, --args=STRING give STRING as the command line arguments to the

proximity scoring program (prog)

Defaults:

- Uses "perl proxscore.pl" as the program for proximity scoring

- Uses no additional command line arguments

- Uses bins = number of query words

CHAPTER 7. PROGRAMS AND SOURCE CODE 60

The usage description explains all the options. The command lines used for our prox-
imity score re-ranking follows (see rerankprox.bat). The batch file interpreter replaces the
%query% token with the actual query.

perl rerank_prox.pl "..\Query_Results\%query%" "%query%"

-a "--stoplist=none" --bins=40

This sample command runs proximity score re-ranking with no stoplist and 40 bins. To
re-rank the query “book reviews” then, we would use the following command.

perl rerank_prox.pl "..\Query_Results\book reviews" "book reviews"

-a "--stoplist=none" --bins=40

The rerank_prox.pl script writes its output to STDOUT. The output of the program is a
line for each page. Each line contains four tab (\t) delimited entries.

rank local_html_file proximity_score url

• rank is the zero-indexed rank of local_html_file.

• local_html_file is the name of the local page, e.g. page5.html

• proximity_score is the proximity score of local_html_file for the query.

• url is the original URL of the file.

7.5 Human Rating

The programs discussed in this section are written in C# and compiled for the .NET platform
using Visual Studio .NET. They are very rough programs designed solely for one task and
are not very adaptable.

Both of the programs have directories and queries encoded within the source code of the
program – there is no way to change these options without recompiling the program.

In this section, we simply present and explain the user interface of each program. See the
accompanying CD for the source code listings in the RatingApp and the RatingAppOrder

directories.

7.5.1 Precision Scoring

Our first program RatingApp.exe performs precision scoring. See Figure 6.3 for a screenshot
of the full RatingApp.exe window and Figure 7.2 for just the user interface.

The program reads a list of web pages to display for precision scoring from the directory
L:\Human_Results\%query%\order-relevance.txt where %query% is the current query,
found at the end of the title bar in Figure 7.2. In order for precision scoring to work, the
directory L:\Query_Results\%query%\%query%.txt must contain a simple map between
pages and URLs as described on page 56.

CHAPTER 7. PROGRAMS AND SOURCE CODE 61

Figure 7.2: The user interface for our precision scoring application.

As soon as a user clicks the “Not Relevant” or “Relevant” button, the program presents
the next page. This continues until the user has rated all pages in L:\Human_Results\

%query%\order-relevance.txt.
If, for some reason, the original page does not display properly, the user can click the

“This doesn’t look right!” button. The first time a user presses this query, the program
attempts to load a different cached version of the page. The second page the interface shows
is the base page created by cache_images.pl described in Section 7.3.2. After the user
presses the button the first time, the program changes its name to “This still doesn’t look
right!” If the user presses the button a second time, the program loads a live view of the
page.

The program writes the results of the comparisons to the file L:\Human_Results\%query%
\%user%.rel.txt where %user% is the user identifier for the current user. Each line in the
file contains the word “page”, a tab, the number of the page, a tab, and the result, “0” or
“1.” A result of “0” indicates the user judged the page not relevant, whereas a result of
“1” indicates the user judged the page relevant. In the following example, page5.html and
page40.html are relevant to the query, but page78.html and page1.html are not.

page 5 1

page 78 0

page 40 1

page 1 0

7.5.2 Comparisons

Our second program RatingAppOrder.exe performs relevance ordering. See Figure 6.4 for a
screenshot of the full RatingAppOrder.exe window and Figure 7.2 for just the user interface.

Figure 7.3: The user interface for our relevance ordering application.

The program reads a list of web pages to display for relevance ordering from the directory
L:\Human_Results\%query%\order-comp.txt where %query% is the current query, found

CHAPTER 7. PROGRAMS AND SOURCE CODE 62

at the end of the title bar in Figure 7.2. In order for relevance ordering to work, the directory
L:\Query_Results\%query%\%query%.txt must contain a simple map between pages and
URLs as described on page 56.

In the interface of RatingAppOrder.exe the user chooses which of two pages is more
relevant to the query. They switch between pages by pressing the “Page A” or “Page B”
buttons. The current page is shown in the label that currently displays “Page B.” After the
user makes his or her judgment about the pages, he or she presses the “Page A is Better” or
“Page B is Better” as applicable. After the user presses this button, the program displays
the next set of pages for comparison, until it has exhausted the list of comparisons from
order-comp.txt.

If, for some reason, the original page does not display properly, the user can click the
“This doesn’t look right!” button. The first time a user presses this query, the program
attempts to load a different cached version of the page. The second page the interface shows
is the base page created by cache_images.pl described in Section 7.3.2. After the user
presses the button the first time, the program changes its name to “This still doesn’t look
right!” If the user presses the button a second time, the program loads a live view of the
page.

The program writes the results of the comparisons to the file L:\Human_Results\%query%
\%user%.comp.txt where %user% is the user identifier for the current user. Each line in the
file contains the local HTML file name for page A and page B and the result, either “A” or
“B.” If the result is “A”, then the user ranked the first page (page A) better than the second
page (page B). Likewise, if the result is “B”, then the user ranked the second page (page B)
better than the first page (page A). In the following example, a user compared three sets
of pages and rated page7.html above page161.html, page27.html above page3.html, and
page8.html above page1.html.

page161.html page7.html B

page27.html page3.html A

page1.html page8.html B

7.6 Other Scripts

We wrote many scripts to aid our project over the course of two semesters. Unfortunately,
we cannot fully explain all of them. Table 7.2 contains a list of scripts and a brief description
of each script. The scripts are in the misc directory on the CD accompanying this report.

Script Name Description

check caching.pl Checks the image caching of pages from
cache_images.pl. The output from this
script is a list of uncached pages and direc-
tories.

create human directories.pl Creates the human_results directory struc-
ture for all the queries inside the script.

continued on next page

CHAPTER 7. PROGRAMS AND SOURCE CODE 63

Script Name Description
create kendall input.pl Outputs a matlab .m file on STDOUT with the

data to run Kendall’s Tau comparisons on
the four rankings: Google’s, bottom up MIU
analysis, top down MIU analysis, and prox-
imity scoring.

direct matrix gen.pl Generates the matrix of comparisons from
the human comparison results, and outputs
a matlab .m file on STDOUT with this ma-
trix. The script reads the human compar-
isons from STDIN.

fix uncached pages.pl Reads the input from check_caching.pl

on STDIN and re-runs the cache_images.pl

script on the uncached pages.
lookup page.pl Determines the re-ranking of a page (e.g.

page5.html) for a given query and analysis
method (e.g. bottom up).

query page set.pl Outputs the top 10 pages from each of the
three re-ranked sets of pages in one com-
bined list of local HTML files. We used
the output of this script for as input for
randomize_exhaustive_comparisons.pl.

randomize comparisons.pl Outputs a certain number of random com-
parisons within a fixed size set.

randomize exhaustive comparisons.pl Reads a list of pages from STDIN and out-
puts a randomized list for an exhaustive com-
parison among the pages. Writes this list to
STDOUT.

randomize relevance.pl Reads order-relevance.txt for a list of
pages in the human_results directory, ran-
domizes this list, and then overwrites the
original order-relevance.txt file with the
new list.

rerank query.bat A batch file to run all three re-ranking meth-
ods for a query.

rerankmius bu.bat A batch file to get the bottom up re-ranking
for a query.

rerankmius td.bat A batch file to get the top down re-ranking
for a query.

rerankprox.bat A batch file to get the precision scoring re-
ranking for a query.

continued on next page

CHAPTER 7. PROGRAMS AND SOURCE CODE 64

Script Name Description
select 10.pl Outputs the top 10 pages from each of the

three re-ranked sets of pages in three lists.

Table 7.2: Brief descriptions of the miscellaneous scripts used in our project.

7.7 Algorithmic Analysis

In this section, we present the algorithmic complexity of our three analysis methods: bottom
up MIU analysis, top down MIU analysis, and proximity scoring. Also, we give the runtime
of our re-ranking algorithms. We do not present formal proofs of the stated complexities.
However, we justify the run-time values using the theoretical algorithms.

Bottom Up MIU Analysis

In our implementation of the bottom up algorithm, after the algorithm merges two nodes,
it must reexamine all pairs of nodes for potential header-content merging. In the case of a
linear tree, its runtime is quadratic: O(n2). On average, it will be much less than this. n is
the number of nodes in the tag tree.

In this analysis, we assume that constant time, O(1), implementations of MIU_GetText
and MIU_MergeAdjacent are possible – this is not the case in the current code. We also do
not consider the complexity of constructing the HTML DOM tree.

Top Down MIU Analysis

In the process of splitting and examining the tree, the algorithm can only look at each node
once. Consequently, the big-O runtime of the top down MIU analysis is linear: O(n). Again,
n is the number of nodes in the tag tree.

In this analysis, we assume that constant time, O(1), implementations of MIU_GetText
and MIU_MergeAdjacent are possible – this is not the case in the current code. We also do
not consider the complexity of constructing the HTML DOM tree.

Proximity Scoring

The big-O runtime of proximity scoring is quadratic: O(n2). However, with a cutoff value,
the big-O runtime is linear: O(n). In these cases, n is the number of words in the file.
With no cutoff value, the algorithm might have to search until the end of the file for every
occurrence of a query term. If the file has n words, this could take n steps for each of n
possible term matches, demonstrating a quadratic run-time.

With a cutoff value, there is a constant number of terms the algorithm will search for
each query term that occurs in the text. Thus, if the file has n words, this algorithm would
only take a constant number of steps for each of n possible term matches, demonstrating a
linear run-time.

CHAPTER 7. PROGRAMS AND SOURCE CODE 65

We hypothesize that there is a purely linear algorithm for proximity scoring, even without
using a cutoff.

MIU Re-Ranking

Since this algorithm involves a similar process to “proximity scoring” the run-time analysis
is the same. The MIU window re-ranking algorithm has a O(n2) runtime to compute the
MIU windows. The other components of re-ranking only involve sorting. Presumably, the
algorithmic rank lookup is O(1) which produces a final runtime of n log(n) + nm2, where n
is the number of pages and m is the maximum number of MIUs on a page.

Proximity Score Re-Reranking

Proximity score re-ranking involves a sort, a division into sets, and another sort. The com-
plexity of these steps is n log(n), n, and n log(n) respectively. Consequently, the overall
complexity of the proximity score re-ranking algorithm is O(n log(n)).

Chapter 8

Our Results

We use two different metrics to measure the accuracy of our re-rankings. The first metric,
precision (see Section 4.2.1), determines whether a web page is relevant or not relevant to a
given query. The second metric, relevance ordering (see Section 4.2.2), determines how “well
ordered” the results from each re-ranking are compared to a standard ranking determined
by humans. Both metrics of re-ranking accuracy are important in understanding our results.
Take for example, the query “guitar hanger stand.” The top ten Google pages for this query
received a 90% precision rating, that is nine of the ten pages were deemed relevant, by
humans, to the query.

However, the ranking for this query, generated by humans, tells a different story. The top
ten pages, as ranked by humans, include only three of Google’s top ten pages (see Table 8.1).
Thus, only using precision, or only using relevance ordering would produce an incomplete
picture.

Human and Google Relevance Orderings for “guitar hanger stand”

Position Google’s Ranking
1 page66.html

2 page47.html

3 page13.html

4 page58.html

5 page16.html

6 page25.html

7 page17.html

8 page4.html

9 page6.html

10 page5.html

Table 8.1: Human and Google Relevance Ordering for the query “guitar hanger
stand”. The left column shows the human ranking positions and the right column
shows the Google ranking of the page in that position. Thus, the first row reads,
humans felt the most “important” page to the query “guitar hanger stand” was
the page Google ranked 66th using PageRank.

66

CHAPTER 8. OUR RESULTS 67

The remainder of this chapter discusses the results of our project. In terms of precision,
the bottom up method performed the best. In terms of relevance ordering, Google performed
the best. Interestingly, the proximity scoring method performed well when Google has poor
relevance ordering performance. However, neither of our two metrics, precision and relevance
ordering, shows that any of our methods have a statistically significant advantage over the
algorithmic search engine we used for testing, Google.

In addition to discussing the formal results we found, we provide a discussion of interesting
observations about our data. These observations were obtained during data analysis, and
though they have not been thoroughly explored, they are important to note.

8.1 Metric 1: Precision Results

Table 8.2 below illustrates all our results for precision. A summary of our results follows in
Table 8.3. These data shows that the bottom up approach has the highest average precision,
and that it has precision strictly greater than Google the most often (27.6% of the time).
The bottom up approach also has the highest precision the most often (70.7% of all queries
measured, including ties), that is, on 41 of 58 queries the precision of the bottom up method
was greater than or equal to all the other methods. Our bottom up method, as well, achieves
perfect precision the most often (36.2%), tied with the top down approach. However, an F-
Test on the data failed to show any between group differences within a 95% confidence
interval; P = 0.29.

BU TD Prox Google

a summary on world war one 0.9 0.4 0.5 0.9
always on top utility 0.7 0.7 0.2 0.7
bartender drinks mixed drink recipes 1.0 1.0 1.0 0.9
blue mountain 1.0 1.0 0.9 1.0
boston apartments 0.8 0.8 0.8 0.8
brand new rock 0.6 0.4 0.5 0.7
certification in housing 0.8 0.8 0.7 0.9
cheap tech gear 0.6 0.6 0.1 0.7
church service 0.6 0.6 0.5 0.6
colleges that offer training for private investigators 0.5 0.2 0.4 0.6
contour pillow 1.0 1.0 1.0 1.0
cybernet ventures 0.9 0.9 0.9 0.9
eddie bauer infant car seat 1.0 1.0 1.0 1.0
elva corporation 0.0 0.1 0.2 0.0
fleet space museum calif 0.4 0.0 0.2 0.1
forklift operator 0.5 0.5 0.5 0.5
free chess tactics 0.4 0.7 0.8 0.2
front bumper 0.8 0.8 0.9 0.8
gender differences in education 0.9 0.9 0.8 0.8
guitar hanger stand 0.9 0.9 0.9 0.9

continued on next page

CHAPTER 8. OUR RESULTS 68

BU TD Prox Google
harry potter 0.9 0.9 0.8 0.9
health insurance companies of tampa bay florida 0.3 0.0 0.2 0.0
health insurance probability and accountability act 0.8 0.6 0.6 0.9
infectious diseases 1.0 1.0 1.0 1.0
java 0.7 0.7 1.0 0.7
john milton 1.0 1.0 0.6 1.0
jpeg cd burner slide show dvd player 0.8 0.9 0.7 0.8
kingdom hearts 59 puppies 0.7 0.4 0 0.7
laptop cases 0.8 0.8 0.8 0.8
learn thai massage in thailand 1.0 1.0 0.6 0.9
los molinos 1.0 1.0 0.8 1.0
lyrics eminem super man 0.7 0.6 0.4 0.8
manual transmission near phase 0.1 0.0 0.2 0.3
maternity scrubs 1.0 1.0 0.9 1.0
mindstorm lego robotics 0.9 0.9 1.0 0.8
motorola v120c phone accessories 1.0 1.0 1.0 1.0
mystery party 1.0 1.0 0.9 1.0
nt administration helpdesk 0.7 0.6 0.4 0.7
paint stick new inventions 0.1 0.0 0.0 0.1
pokemon 1.0 1.0 1.0 0.9
pretty sunset landscapes 0.8 0.3 0.5 0.7
san luis obispo 1.0 1.0 0.8 1.0
sebring headlight 1.0 1.0 0.9 1.0
sesame street cookie monster 0.9 0.9 0.9 1.0
she loves me and veronica 0.3 0.2 0.6 0.3
sick building syndrome 1.0 1.0 1.0 1.0
star trekker 0.9 0.9 0.6 0.9
statistical language analysis 0.6 0.6 0.7 0.4
structural design context applications 0.4 0.5 0.3 0.5
sun city arizona tours to laughlin and vegas 0.8 0.7 0.8 0.6
super child model 0.7 0.5 0.5 0.5
terrorism iraq afghanistan 1.0 1.0 1.0 0.7
the actors gang 1.0 1.0 0.6 0.9
the psychological corporation 1.0 1.0 1.0 0.9
thomas the tank boco 1.0 1.0 0.9 1.0
u.s.a olympic ice skating contenders 0.8 0.8 0.4 0.8
un members 1.0 1.0 1.0 0.9
world junior hockey 1.0 1.0 1.0 1.0
average 0.78 0.73 0.68 0.75

Table 8.2: Here, BU stands for our bottom up method, TD is our top down
method, and Prox refers our proximity scoring method. This table gives the
precision scores of each of our three methods and Google for all fifty-eight
queries that were tested. The precision scores are between 0 and 1. For
instance, the 0.7 in the Prox column for the query statistical language analysis
means that of the top ten pages returned by our proximity scoring algorithm,
the team judged seven pages to be relevant to the query.

CHAPTER 8. OUR RESULTS 69

Average
Precision

Queries with Better
Precision than Google

Queries with Best
Precision

Google 0.75 0 37
Bottom Up 0.78 16 41
Top Down 0.73 14 34
Proximity Scoring 0.68 15 24

Table 8.3: This table is a summary of the precision scores of our three methods
and Google. Again, each precision score is between 0 and 1. The second column
measures how many queries the method has strictly greater precision than Google.
The third column counts the queries where the precision was the best, or equal
to the best, of any of the methods.

8.2 Metric 2: Relevance Ordering Results

The table below illustrates all our results for relevance ordering. These data show that
Google has the highest average relevance ordering, .1210. This is followed closely by the
bottom up approach, with an average relevance ordering of .1069. Again, however, an F-
Test on the data failed to show any between group differences within a 95% confidence
interval; P = 0.34. Although proximity scoring had the lowest average relevance ordering,
its results were the most interesting. On all but 7 of the 29 queries tested, proximity scoring
achieved a positive correlation score when Google achieved a negative correlation score,
and vice versa. Proximity scoring achieved a negative relevance ordering 13 times, and
Google 9 times and one score exactly zero. This suggests that Google rates web pages with
a significantly differently method than just proximity scoring. In contrast, top down and
bottom up achieved the exactly the same relevance ordering as Google 8 times out of 29.
This suggests the same argument that our statistical tests show: that our methods did not
re-rank the results differently enough for there to be any variation between the methods.

BU TD Prox Google

a summary on world war one 0.5714 -0.0197 -0.2857 0.7192
bartender drinks mixed drink recipes 0.3123 0.1383 -0.1779 0.3518
brand new rock -0.0467 0.1333 0.1333 -0.1800
cheap tech gear 0.0646 0.0400 -0.1631 0.2369
colleges that offer training for private investigators 0.2328 0.1164 0.2751 0.3016
contour pillow 0.1813 0.1813 -0.2164 0.1813
cybernet ventures 0.5789 0.5789 -0.2749 0.4386
eddie bauer infant car seat 0.1368 0.1368 -0.4105 0.2632
free chess tactics 0.0997 0.0256 -0.0256 0.151
guitar hanger stand -0.1082 0.0736 0.2121 -0.2814
harry potter -0.0526 -0.0526 0.2164 -0.0526
infectious diseases 0.000 0.000 0.1684 0.000

continued on next page

CHAPTER 8. OUR RESULTS 70

BU TD Prox Google
java -0.1895 -0.1895 0.4842 -0.1895
john milton 0.1905 0.1905 -0.2381 0.181
laptop cases 0.3789 0.3789 -0.200 0.3789
learn thai massage in thailand 0.1169 0.0909 0.1515 0.1342
los molinos -0.1912 -0.1912 0.3824 -0.1912
maternity scrubs 0.0441 -0.0147 0.0294 0.0441
motorola v120c phone accessories -0.1600 0.1333 0.1067 -0.0867
mystery party 0.2526 0.2526 -0.1368 0.2526
paint stick new inventions -0.1206 0.0603 0.3429 -0.1365
pretty sunset landscapes 0.1111 -0.1058 0.1481 0.0952
sesame street cookie monster -0.3400 -0.3867 0.08 0.0333
sick building syndrome -0.0105 -0.0105 0.2105 -0.0105
statistical language analysis 0.2526 0.2421 -0.1053 0.1579
terrorism iraq afghanistan 0.2933 0.2533 0.2067 0.1667
the psychological corporation 0.2000 0.2000 0.1053 0.0211
thomas the tank boco 0.3676 0.3043 -0.3360 0.4941
u.s.a olympic ice skating contenders -0.1474 -0.1474 0.1789 -0.0316
un members 0.1895 0.1895 -0.1158 0.1895
average 0.1069 0.0867 0.0249 0.1211

Table 8.4: Again, BU stands for our bottom up method, TD is our top down
method, and Prox refers our proximity scoring method. This is a list of the
relevance scores for all thirty of the queries. Each score is between −1 and 1.

8.3 Interesting Observations About Our Results

Here are some observations on the results we obtained. We believe these observations would
be fruitful to explore in future work.

We discuss the results of both precision (see Section 4.2.1) and relevance ordering (see
Section 4.2.2).

Please note that in this section we use the names of our methods to describe the use
of our methods and the re-ranking used with that method. For example, we use the term
“bottom up” to describe the process of bottom up MIU analysis together with the subsequent
re-ranking using the results from bottom up MIU analysis.

8.3.1 Observations on Relevance Ordering Data

Our first observation on the relevance ordering data is that proximity scoring consistently
(98.3% of the time) shifts over half of Google’s top ten pages out of the top ten ranking
positions, and in many instances (44.8% of the time) all of Google’s top ten pages were
shifted out of the top ten position. This indicates that Google’s ranking criteria differ
significantly from our proximity scoring re-ranking criteria.

CHAPTER 8. OUR RESULTS 71

Another interesting observation on the relevance ordering data is that only one query re-
ranked with MIU analysis had an MIU window size (see Section 4.1.2.1 for details on MIU
windowing) greater than one in the top ten results. This means that in almost all of the
top ten pages, our MIU analysis algorithms constructed one MIU with all the query terms.
The one exception was the query “sun city arizona tours to laughlin and vegas” using the
bottom up MIU analysis method. We are unsure what the significance of this observation
is; however, we felt it note worthy.

Our third interesting observation on the relevance ordering data is that, for each query,
proximity scoring shifted at least one very low ranked page (94.8% of the time greater than
100) up to a position in the top 10. Thus, proximity scoring shows a dramatic shift in the
pages it finds more important to a query. Additionally, the lowest ranked page in the top ten
usually fell at position 5. This can be explained by the binning technique used to re-rank
pages based on proximity scoring. Recall from Section 4.1.2.2 that the pages are sorted
into bins of size b based on their proximity score, and then sorted within the bin using the
ranking from the algorithmic search engine. In our implementation (see Section 7.4), b = 6.
Thus, each bin held six pages, and within each bin the pages were further sorted by Google’s
ranking. To show what happens, let us take the example of the query “a summary of world
war one.” Table 8.5 shows the proximity score ranking of the top six pages for the query

Proximity Score Ranking for “a summary of world war one”

Position Google’s Ranking Proximity Score
1 page64.html 10.1558
2 page80.html 6.4675
3 page81.html 7.0724
4 page94.html 7.3729
5 page115.html 8.2716
6 page194.html 5.1197

Table 8.5: Proximity score ranking for query “a summary of world war one.” This
table shows the top six pages (i.e. the pages in the first bin) based on proximity
scoring. The first line in the table means: The proximity scoring method re-
ranked Google’s page 64, with a proximity score of 10.1558, to position 1.

“a summary of world war one.” The important feature to note here is that while the pages
under Google’s Ranking are in ascending order, the proximity scores are not. The pages
presented in Table 8.5 are the pages with the top six proximity scores, but they have been
reordered according to Google’s ranking. Since the bin is of size six, the lowest ranked page
will be in position 5. The same phenomena will occur for all subsequent bins, each also of
size six.

8.3.2 Observations on Precision Data

Recall from Section 6.2.1 that precision data was collected on the top ten pages returned by
each method. With this information we evaluated how precise each method was for each of
the 58 queries we tested.

CHAPTER 8. OUR RESULTS 72

There were quite a few interesting observations made on the precision data. First, it
was observed that each of the two times that Google had a precision rating of zero on a
query, one of our MIU methods also had a precision rating of zero. In one instance it was
the bottom up method, in the other it was the top down method. Second, we noted that
each method (Google, proximity scoring, bottom up, and top down) had a zero precision
rating on at least one of the queries. This shows that each of the methods will have trouble
identifying relevant pages to at least one type of query.

Next, we examined each method for how many times it showed perfect precision (a
precision score of 1) on a query (see Table 8.6 for results). A query has a precision score
of 1 when the top ten results returned were all judged by humans to be relevant to the
given query . We found that the two MIU methods (bottom up and top down) had perfect
precision more often than the other two methods.

Measurements of Perfect Precision

Number of times with Percentage of time with
Method Perfect Precision Perfect Precision

Bottom Up 21 36.21%
Top Down 21 36.21%

Proximity Scoring 13 22.41%
Google 15 25.86%

Table 8.6: Number of times each method had perfect precision (precision score
of 1) on a query. The first line of the table reads: The bottom up method had
perfect precision on 21 of the queries, which is 36.21% of the total queries.

After looking at perfect precision measures, we examined how many times all three of
our methods (bottom up, top down, and proximity scoring) had higher precision scores than
Google, and how many times Google had a precision score higher than the precision scores
for all three of our methods. We found that the count was approximately equal. On eight
of the queries (or 13.8%) all of our three methods had higher precisions scores than Google.
On seven of the queries (or 12.1%) Google’s precision score was higher than the precision
scores or each of our three methods. Lastly, on 11 of the queries (or 10.9%) all the methods
(bottom up, top down, proximity scoring, and Google) had the same precision score. This
data is summarized in Table 8.7.

CHAPTER 8. OUR RESULTS 73

Relation of Precision Scores

Relation of Precision Scores Number of queries Percentage of queries
BU, TD, PS > Google 8 13.8%
BU, TD, PS = Google 11 19.0%
BU, TD, PS < Google 7 12.1%

Table 8.7: Relation of precision scores of each of the four methods (bottom up or
BU, top down or TD, proximity scoring or PS, and Google). The first line of the
the table reads: bottom up, top down and proximity scoring had higher precision
scores than Google on 8 of the queries (or 13.8%).

Chapter 9

Conclusion

In this chapter we discuss our conclusions on how relevance ordering in web searches can be
improved.

Our project was to research how to improve relevance ordering in web search. We first
explored the Overture Summer Clinic research, and decided to continue the idea of MIU
(micro information unit) analysis. We implemented three methods: an adaptation of Li et
al’s bottom up approach to MIU analysis, an adaptation of Chakrabarti et al’s top down MIU
approach, and proximity scoring. Both the bottom up and top approaches to MIU analysis
exploit the HTML tag structure of the web page. The bottom up method segments web pages
into MIUs by recursively attempting to merge the lowest tag nodes together according to
the similarity of the text. The top down method employs the opposite approach, recursively
considering only the top children nodes, and using a text similarity function to split the
page into MIUs. Our third method assigns scores to each web page according to a proximity
scoring function. We then re-ranked the top 200 web pages returned by Google for each of
58 queries, using each of the two MIU segmentations and proximity scoring. We used two
metrics to measure the effectiveness of our re-rankings: precision and relevance ordering.
Precision is the fraction of how many web pages are deemed relevant to a query out of those
top N pages returned by one of our methods. Relevance ordering is a measure of how well
correlated the re-ranked results from our three methods are to an ideal human ranking.

After implementing the methods and running testing protocols, we found that on average,
the bottom up MIU approach had the highest precision of the four methods: bottom up ,
top down, proximity scoring, and Google. The bottom up approach also had higher precision
than Google’s results the most times (16 out of 58 queries). It also tied with Google for the
most queries with the best precision (21 out of 58). However, the results were not statistically
significant. Google achieved the highest average relevance ordering out of all four methods.
Proximity scoring beat Google the most times out of our three methods with respect to
relevance ordering, and it seems that when Google had low relevance ordering, proximity
scoring often achieved high relevance ordering. However, the average relevance ordering for
proximity scoring was the lowest because proximity scoring seemed to do either very well or
very poorly.

74

CHAPTER 9. CONCLUSION 75

9.1 Limitations of Our Methods

The three methods we developed are each advantageous in web searching. However, each
method has its drawbacks. This section reviews some limitations of each of our methods for
improving relevance ordering in web searching.

9.1.1 Limitations of Top Down MIU Analysis

We noticed two limitations to the top down method:

1. Given our implementation of top down, a page is very unlikely to have only one MIU
after MIU analysis.

2. Certain pages, because of their structure and our implementation, can only be broken
into very few or very many MIUs.

The way top down is implemented, in each iteration of the algorithm, either a parent node
must be split into all of its children nodes or the algorithm must come to a halt. The HTML
DOM tree (see Section 3.2) for each page uses the <html> tag as the root node. Thus, the
children of the root node are the <title> and <body> tags. Recall from Section 5.1.3 that
if the content of the children of a parent node is sufficiently similar to the document as a
whole, then the parent node is split into its children. In the case of the root node for each
tree, the <body> node will be sufficiently similar to the entire document because it is most
of the document; the title is only a small portion of the entire document. Thus, though it
is possible for the top down algorithm to produce only one MIU, it is highly unlikely based
on the structure of the HTML DOM trees and the implementation of the top down MIU
analysis approach.

The second limitation of the top down method occurs on a certain type of tree (see
Figure 9.1). In this type of tree a majority of the nodes of the DOM tree are the children
of a single parent node. Thus, the parent node, which contains the majority of the nodes
of the tree as its children, will either remain as one MIU or be split into all of its children.
Thus, the web page will either contain just a few MIUs or many, many MIUs.

node

node node node node node etc

node node

Root node

It should be noted in the diagram above, that the middle node on the second level down has an
arbitrarily large number of child nodes.

Recommendation

A few extensions that could be added to the current algorithm are:

? Dual Threshold Approach: The idea of this approach would be to use two thresholds: an
upper threshold and a lower threshold. If the similarity score for an MIU were bigger
than the upper threshold, then the algorithm would split that MIU into more MIUs. If the
similarity score for an MIU were between the upper and lower thresholds, then the
algorithm would halt. If the similarity score for an MIU were less than the lower
threshold, then the algorithm would attempt to merge that MIU back into another MIU.

? Pair-wise Comparison: Rather than comparing the child MIUs to the document as a
whole, you would compare them among themselves.

Note that both of these recommendations fix the problem of note being able to obtain one MIU
with the Top-Down method.

? Investigate convergence of number of MIUs on linear pages (i.e. lots of text, no high
level structure).

Figure 9.1: DOM tree depicting one parent node which contains the majority of
the nodes of the tree as its children.

CHAPTER 9. CONCLUSION 76

9.1.2 Limitations of the MIU Approach

The MIU approaches we implemented fail to parse certain pages into topical MIUs. One
specific example is with the implementation of tables in web pages. Take for example the
HTML table in Figure 9.2. The HTML code for this table is shown in Figure 9.3. The table
has four header cells: “Astronomy,” “Current Sun Picture,” “Current Moon Phase,” and
“Astro Pic of the Day.” Each header cell has one content cell beneath it. If a human were
to break this table into MIUs, a logical (to a human) choice would be to group each header
cell and its corresponding content cell together as one MIU, resulting is a total of four MIUs.
However, if we look at the code for this table we will find that tables in HTML are coded
by row. Thus each row is embedded in a table row or <tr> tag. In the structure of our two
MIU analysis methods, unless two nodes are children of the same parent node in the HTML
DOM tree, there is no way for them to be a part of the same MIU. Since the header cell and
content cell will never be children of the same parent node, they will never be a part of the
same MIU unless the entire table is a part of the same MIU. This is a major drawback to
MIU analysis since many web pages use tables to structure their content.

9.1.3 Limitations of Proximity Scoring

There is one major issue with our implementation of proximity scoring. Hawking et al
(see Section 5.2) recommended using a cutoff to eliminate extremely long phrases from
contributing to the proximity score. However, this would cause problems with sticky terms
in a multi-word query. Sticky terms are terms in a query that may not have to appear near
the other terms although the page is relevant. One example would be “dog door Pasadena.”
Presumably, the user’s intention is to look for information on dog doors in Pasadena. Even
though Pasadena may not occur near dog door, the page is still relevant. Using cutoffs would
eliminate this behavior, unless the term fell within the cutoff range.

In our experiment, we chose to accommodate sticky terms by not using a cutoff. In
Section 10.3, we discuss sticky terms in more detail.

CHAPTER 9. CONCLUSION 77

Erin's Bodine's Homepage [work in progress]

Links

Erin's Schedule
Erin's PhotoAlbum

Search

Google Lucky?

Oth.Net mp3z

Barnes & Noble

Yahoo

Dictionary.com

HMC Directory

Picks of the Month

Guitar Tablature
OLGA
Guitar Swamp
Guitar Tab Universe
Guitar Tabs

[Previous Montly Picks]

Useful Sites Vendors Movies News Harvey Mudd/School

Discover Card [login]
KCRW [simulcast]
LA Traffic
NPR [NPR stream]
Wells Fargo [login]
Weather [91711]
Yahoo [login] [weather]

Amazon
Barnes & Noble
BestBuy
Costco
eBay

Rotten Tomatoes
Movie Trailers
Upcoming Releases
Yahoo Movies [local]

ABC
BBC
CNN
MS NBC
NY Times
Salon
Wired News

Anthropology Department [Pitzer]
CS Department [LaTeX]
Harvey Mudd [MuddShots]
Math Department [Clinic] [Overture Clinic]

Course Schedule
Claremont Colleges Libraries [ERES]

Astronomy Current Sun Picture Current Moon Phase Astro Pic of the Day

Astronomy.com
Astro Pic of the Day
BigBear Latest Solar Images
Meteor Observing Calendar
Moon Phases
NASA Latest Solar Images
Sky and Telescope
Space Weather

Yahoo Driving Directions Outdoor Adventure Links

From:

Address: Zip or City/State:
To:

Address: Zip or City/State:

340 E Foothill Blvd 91711

Get Directions

California Outfitters
GORP [California]
Leave No Trace
National Park Service [parks]
REI [outlet]
thebackpacker.com
Philmont Scout Ranch

Notes

• [06-June-2002] Woohoo ... my own homepage
• [20-March-2003] Updates made. Photo Album added.

Figure 9.2: Image of a table coded in HTML. The table has four header cells:
“Astronomy,” “Current Sun Picture,” “Current Moon Phase,” and “Astro Pic of
the Day.” Each header cell has one content cell beneath it. This table was taken
from www3.hmc.edu/∼ebodine.

<table>

<tr>

<td>Astronomy</td>

<td>Current Sun Picture</td>

<td>Current Moon Phase</td>

<td>Astro Pic of the Day</td>

</tr>

<tr>

<td>

Astronomy.com

Astro Pic of the Day

BigBear Latest Solar Images

Meteor Observing Calendar

Moon Phases

NASA Latest Solar Images

Sky and Telescope

Space Weather

</td>

<td>

</td>

<td>

</td>

<td>

</td>

</tr>

</table>

Figure 9.3: The HTML code for the image in Figure 9.2. This source code was
taken from www3.hmc.edu/∼ebodine.

Chapter 10

Future Research

In this section we discuss future directions that we think would be fruitful. In the first
section, we suggest some additional data analysis that we would have liked to do. In the
next section, we present a hybrid MIU analysis procedure that combines bottom up and top
down processing. In the final section, we briefly analyze the notion of sticky queries and
their relationship to proximity scoring.

10.1 Extended Data Analysis

Given more time, there are two more types of data analysis we would perform. First, the
MIU re-ranking method we used was different from the MIU re-ranking scheme Li et al
used. It would be interesting to implement Li et al’s re-ranking method and compare it to
the re-ranking method we implemented.

Second, during the analysis phase of our project, we developed a working hypothesis that
bottom up MIU analysis is just a very strong version of proximity scoring. Given more time,
we would have tested this hypothesis by setting the maximum length of a bottom up MIU
and the maximum length of a proximity scoring span to be the same size. If the results
returned were significantly similar, it would make a strong case for bottom up MIU analysis
being a strong version of proximity scoring.

10.2 Improved MIU Analysis

In our qualitative examination of bottom up and top down MIU analysis, we discovered
a number of pages where each method did poorly. One example is pages with tables; an
example is discussed in Section 9.1.2. We devised, but did not implement, two extensions
to our MIU analysis algorithms designed to improve MIU analysis. Both of these extensions
should be fairly easy to implement with the existing code. Unfortunately neither of these
methods address the table problem discussed in Section 9.1.2. To address the table problem,
we also propose a third, radically different, MIU analysis approach. The new MIU analysis
method would work in conjunction with a HTML display rendering engine.

78

CHAPTER 10. FUTURE RESEARCH 79

Top Down Dual Threshold Top Down

TopDown(tree, d)
1 for each a ∈ children(tree)
2 do if sim(a, d) > δ
3 then TopDown(a, d)
4 else end
5 endfor

DualTopDown(tree, d)
1 for each a ∈ children(tree)
2 do if sim(a, d) > δ
3 then DualTopDown(a, d)
4 else if sim(a, d) > ε
5 then end
6 else Merge(a, d)
7 endfor

Figure 10.1: The core algorithms for top down MIU analysis and dual threshold
top down MIU analysis. This figure highlights the addition of the second thresh-
old value to the top down MIU analysis algorithm. In this algorithm d is the
document as a whole.

10.2.1 Dual-Threshold Top Down MIU Analysis

The premise of the dual-threshold top down approach is that there are pages like the example
in Section 9.1.1 where the document has a very “flat” DOM tree. On these pages, once top
down analysis reaches the root of the linear portion, the page is either very finely segmented
into MIUs, or very coarsely (depending on the result of the similarity metric) – there is no
intermediate step.

To deal with this case, we propose a dual-threshold top down approach. In this approach,
there are two threshold values, δ and ε. The δ threshold controls when segments of the tree
are too similar, and are split. In contrast, the ε threshold controls when segments of the tree
are too dissimilar, and are re-merged.

In this section, we specify the algorithm for the dual-threshold top down algorithm. For
brevity, we only present the part of the algorithm that differs from the top down algorithm.
For this explanation to make sense, please be familiar with the details of top down MIU
analysis from Sections 5.1.3 and 7.1.5. The beginnings of this algorithm are already imple-
mented in the source code for the top down algorithm, although we did not complete the
full implementation.

While top down MIU analysis has only two cases, sim(a, d) > δ and sim(a, d) ≤ δ, the
dual-threshold MIU analysis method has three cases: sim(a, d) > δ, δ ≥ sim(a, d) > ε, and
sim(a, d) ≤ ε. The behavior of the dual-threshold algorithm in the first case is analogous
to the top down algorithm. We split the document if MIU a is too similar to the rest of
the document. The second case is also analogous. If the similarity between MIU a and the
document is between δ and ε, then we terminate the algorithm, since the MIU is between
our similarity thresholds. The last case is novel. If the similarity between MIU a and the
document is below ε, then MIU a is too dissimilar to be its own MIU. In this case, we enter
a re-merging step. For a concise view of the differences, see Figure 10.1.

The last major detail of the algorithm is the merge step, called on line 6 in Figure 10.1.
The merge step looks at the adjacent MIUs and tries to determine which direction to merge.
It merges with an adjacent MIU if the following condition holds. The similarity of the

CHAPTER 10. FUTURE RESEARCH 80

Merge(miu, d)
1 siml = sim(LeftSibling(miu), d)
2 simr = sim(RightSibling(miu), d)
3 if simr < δ ∧ siml < δ
4 then if sim(LeftSibling(miu), miu) < sim(RightSibling(miu), miu)
5 then MergeAdjacent(miu,RightSibling(miu))
6 else MergeAdjacent(miu,LeftSibling(miu))
7 else if simr < δ
8 then MergeAdjacent(miu,RightSibling(miu))
9 else if siml < δ

10 then MergeAdjacent(miu,LeftSibling(miu))

Figure 10.2: The merge function for the dual threshold top down MIU analysis
algorithm.

adjacent MIU to the document must be less than δ. That is, we do no not merge if the
adjacent node will be split by the algorithm. If this condition holds for both adjacent MIUs,
then the MIU we are currently examining merges with the MIU it is most similar to, using
the sim function. If the MIU only has one adjacent node, then it is automatically merged
with that node, provided the first condition holds. Figure 10.2 expresses this function in
pseudo-code form.

Although untested, we hope that this algorithm would improve top down analysis on
pages with flat DOM trees discussed in Section 9.1.1.

10.2.2 Hybrid MIU Analysis

Our proposed hybrid MIU analysis algorithm combines top down and bottom up MIU anal-
ysis directly. From our qualitative observations, bottom up MIU analysis performed well on
highly linear pages, whereas top down analysis performed poorly (see the preceding section
for an example). These are pages where the HTML DOM tree is very “flat.” In contrast,
top down MIU analysis performed well on highly structured pages. These are pages where
much of the layout is based on HTML tables. On these structured pages, bottom up MIU
analysis performed poorly.

The intention of our hybrid method is to capitalize on the strengths of each method and
offset their weaknesses. To accomplish this, our hybrid method first runs the bottom up
algorithm on the web page. The result of the bottom up analysis is then passed as the tag
tree to the top down method.

In theory, this algorithm should address the individual weaknesses described above. For
example, a highly-linear page will already have been merged into appropriate MIUs when the
top down algorithm analyzes it. Likewise, because bottom up MIU analysis cannot merge
very many nodes on a highly-structured page, top down analysis can appropriately divide
these pages.

CHAPTER 10. FUTURE RESEARCH 81

10.2.3 Display Rendering MIU Analysis

Our highly speculative display rendering MIU analysis algorithm synthesizes the on-screen
page layout together with the HTML DOM tree. In this tree, adjacent nodes represent
DOM elements that are spatially close. This representation fixes the table problem discussed
in 9.1.2. With this representation the table headers, which are spatially close to the content
cells, are adjacent, in the tree, to the content cells. Consequently, one might imagine this
tree as three-dimensional structure “growing” out of the on-screen display of a page, because
spatially close elements will share common parents.

10.3 Sticky Terms

Sticky terms are terms in a query that may not have to appear near the other terms. One
example would be “dog door Pasadena.” Presumably, the user’s intention is to look for
information on dog doors in Pasadena. Even though Pasadena may not occur near dog
door, the page is still relevant.

Our current implementation of proximity scoring takes sticky terms in queries into ac-
count by not setting a limit on the proximity scoring span size (see Section 5.2). Thus, the
proximity scoring algorithm may look the entire length of the page to find a span (a string
of words containing every term in the query at least once). However, this is not the only
approach to dealing with sticky terms in queries. A method could be developed, in which
terms identified as sticky need not be included in a span. Then, the span size of the prox-
imity scoring method could have a maximum size, and sticky terms would still be accounted
for. Additionally, this would give proximity scoring an advantage over MIU analysis in that
it could make use of the knowledge of sticky terms in a query.

Bibliography

[BP] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

The paper discusses Brin and Page’s method for how to make a sufficient
search engine given the billions of web pages on the Internet. They claim this
was the first paper of its kind that discusses how to handle the web on a
large scale. The authors’ search engine, Google, debuts in this paper, also. A
number of examples of Google’s robustness are discussed. The paper does not
discuss objectively how good Google is compared to other search engines, but
Google’s impact presently is clearly felt worldwide.

[CJT] Soumen Chakrabarti, Mukul Joshi, and Vivek Tawde. Enhanced topic distillation
using text, markup tags, and hyperlinks. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
208–216. ACM Press, 2001.

The paper explores a method for improving web search by trying to elim-
inate needless and irrelevant links in the searching algorithm. This idea of
“topic drift” involves creating a tree based on the html structure of the page,
and then “cutting off” those branches which the algorithm deems irrelevant.
Qualitative testing suggested that the new approach does in fact reduce topic
drift, but quantitative testing was to be written in another paper.

[CC] Charles L. A. Clarke and Gordon V. Cormack. Shortest-substring retrieval and ranking.
ACM Transactions on Information Systems (TOIS), 18(1):44–78, 2000.

This paper creates an algebra for Boolean queries and develops an efficient
method for ranking documents. The paper has a number of proofs to show
that their algebra works, and also describes the large details of the whole
model step by step. The paper uses a number of examples to help the reader
understand what each defined function does. At the end the paper provides
testing examples and asserts that the model is efficient based on evidence, not
proof.

[DOM] W3C Document Object Model. http://www.w3.org/DOM/, 2003.

[DOMTree] The DOM Tree Structure. http://www.ifi.uio.no/in-id/2002/student_

projects/jorgenn/DOMTree.html, May 2002.

82

BIBLIOGRAPHY 83

This web page gives a straightforward description of the structure of a DOM
Tree. Each type of node is clearly defined here.

[FLMMT] Leslie Fletcher, Colin Little, Lara Mercurio, Tina Meftah, and Simon Tse. Micro-
Information Units: Improving Online Search. Technical report, Harvey Mudd College,
2002. Prepared for Overture Services, Inc.

This is the final report of the Harvey Mudd College summer clinic for Overture
Services, Inc. They explored the idea of Micro-Information Units (MIUs) and
how they can be used to improve the relevance ordering of web searching. The
report includes a summary or their research, their approach, their results and
their code.

[NF-HTML] Niklas Frykholm. The HTML Transform library. http://www.acc.umu.se/

~r2d2/programming/perl/html_transform.

HTML::Transform is a perl module to process and tranform HTML pages.
To use the library, the program specifies “handler” routines to call when the
library encounters tags in an HTML file.

[Hav] Taher H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the Eleventh Inter-
national Conference on World Wide Web, pages 517–526. ACM Press, 2002.

The original PageRank algorithm returns a single vector that ranks the “im-
portance” of each page. The author modifies the original PageRank idea by
developing sixteen different PageRank vectors, each based on a different topic
like “sports” or “business.” The model is particularly effective when the con-
text of the query is known, for based on that context the model will be able
to differentiate between vague terms.

[HT] David Hawking and Paul Thistlewaite. Proximity operators - so near and yet so far. In
D.K. Harman, editor, Proceedings of the Fourth Text REtrieval Conference (TREC-4),
pages 131–143, Gaithersburg MD, November 1995. U.S. National Institute of Standards
and Technology. NIST special publication 500-236.

Hawking and Thistlewaite analyze proximity operators in a text search engine.
They define spans of words and show how these are used to compute a simple
proximity score. A span is a substring of the document that contains all the
words, has a unique starting point, and is as short as possible. The authors
also investigate proximity scoring formulas and determine that 1√

Si
gives the

best precision and recall. Si is the length of the ith span.

[Jel] Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, Cambridge,
Massachusetts, 1997.

This book discusses the statistical aspects of speech recognition. The basic
statistical ideas of speech recognition are covered in length, along with more

BIBLIOGRAPHY 84

advanced concepts. In particular, this clinic is interested in Chapter 4: Basic
Language Modeling, as the models enable us to create reasonable probabilities
for the occurrence of words. The author discusses many heuristics in place of
mathematical proofs at times, appealing to the book’s practical application
toward speech recognition.

[Kee] James P. Keener. The Perron-Frobenius Theorem and the Ranking of Football Teams.
SIAM Review, 35(1):80–93, 1993.

The author applies the Perron-Frobenius theorem to ranking football teams.
Keener discusses four different ways to incorporate the Perron Frobenius the-
orem. The first approach uses the theorem directly, and creates the football
ranking via the Rayleigh method. We adopted this approach and applied it
to the creation of our ideal human rankings for each query.

[Kle] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

In this paper, Kleinberg uses the structure of the Internet and link analysis
to come up with an effective way of improving relevance ordering in search
results. He gives each web page two weights, one conveying the number of
web pages that point to it, and another weight which conveys how many web
pages it points to.

[LM] R. Lempel and S. Moran. SALSA: the stochastic approach for link-structure analysis.
ACM Transactions on Information Systems (TOIS), 19(2):131–160, 2001.

This paper compares the results of Kleinberg’s HITS algorithm to that of
the SALSA. It presents the idea that mutually reinforcing hub and authority
scores may not be very meaningful when a tightly knit community (TKC)
effect occurs.

[zipfs] Wentian Li. Zipf’s Law. http://linkage.rockefeller.edu/wli/zipf/, 2002.

This web page describes what Zipf’s Law is. It has an extensive list of refer-
ences to other sources that deal with Zipf’s Law.

[LLPH] Xiaoli Li, Bing Liu, Tong-Heng Phang, and Minqing Hu. Web Search based on
Micro Information Units. In Proceedings of the Eleventh International Conference on
World Wide Web, Honolulu, HA, May 2002. World Wide Web Conference.

This is the original poster associated with Li et al’s work on MIUs. They define
an MIU, but do not present the algorithm used for MIU analysis. See [LPHL]
for the full paper.

[LPHL] Xiaoli Li, Tong-Heng Phang, Minqing Hu, and Bing Liu. Using micro information
units for Internet search. In Proceedings of the Eleventh International Conference on
Information and Knowledge Management, pages 566–573. ACM Press, 2002.

BIBLIOGRAPHY 85

This is the key paper on MIUs and MIU analysis. Li et al present a new
approach for analyzing web pages for additional relevance information. They
define the concept of an MIU and present an algorithm that performs MIU
analysis in a bottom-up fashion. Further, they show that this algorithm, when
combined with results from the Google search engine, generates significantly
better results in many cases than Google’s own results.

[libmba] libmba. http://www.ioplex.com/~miallen/libmba/.

The libmba library is a collection of useful C functions and data structures.
The library includes a linked list structure, a hash map structure, and a
configuration file manager, among other functions.

[MRSWLF] Joel C. Miller, Gregory Rae, Fred Schaefer, Lesley A. Ward, Thomas LoFaro,
and Ayman Farahat. Modifications of Kleinberg’s HITS algorithm using matrix ex-
ponentiation and web log records. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
444–445. ACM Press, 2001.

This paper describes the two modifications to the Kleinberg HITS algorithm.
The first modification, Exponentiated Input resolves the problem of the HITS
algorithm returning either arbitrary or non-intuitive results. The second mod-
ification, Usage Weighted Input, takes into consideration how often users use
a certain link in a given time period.

[PBMW] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford University, 1998.

The intrinsic importance of a web page may be very subjective, as that may
depend on a user’s interests and needs. However, one can find the relative
importance of web pages by using objective methods that measure a human’s
attention and interest paid to each web page. The authors present the Page-
Rank method for ranking the relative importance of web pages, and shows
how to compute the scores even with a large number of pages. The paper
then illustrates the efficiency of the PageRank algorithm by comparing it to
an idealized random web surfer.

[HWR] Jonathan Robie Philippe Le Hegaret, Lauren Wood. What is the Document
Object Model? http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/

introduction.htm%l, 2002.

This is a technical web page which is geared towards advanced HTML and
XML programmers. It describes what a DOM is, what a DOM is not, where
it came from, and other pertinent information. In addition, there are links to
other web pages related to topics discussed here.

BIBLIOGRAPHY 86

[RFQWG] Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, and Amardeep Grewal.
Probabilistic question answering on the web. In Proceedings of the eleventh international
conference on World Wide Web, pages 408–419. ACM Press, 2002.

The paper explores how a search engine might be able to answer questions,
similar to AskJeeves. The model is divided into a number of steps, clearly
outlining what needs to be completed. It is a valiant idea, but the execution
of it at least in the paper falls short. Intuitively, many types of questions
may be very difficult to answer just by searching through documents and
identifying key words.

[TidyLib] HTML Tidy Library Project. http://tidy.sourceforge.net/.

The HTML Tidy library project publishes the TidyLib HTML processing
library. This library produces data structures for the HTML DOM Tree.

Appendix A

Related Research

A.1 Kleinberg’s HITS Algorithm

The Kleinberg Algorithm [Kle] is a local Internet search algorithm that uses the text-based
searches and the hyperlinked environment of the Internet in order to return relevant search
results to a given query. The Kleinberg algorithm, also known as the Hyperlink Induced Topic
Search (HITS) algorithm is built on the idea that the purpose of a website is either to provide
information on a certain topic, or to provide links to other pages that have information on
that same topic. So under this algorithm, given a query, each web page is given two different
weights, the authority weight and the hub weight. The authority weight measures how good
the information on the given subject is. The hub weight measures how good of a hub the
web page is. That is, for a given query, it measures how good the information is on the pages
the page being weighted points to. This algorithm is a mutually reinforcing relationship, if
the web page provides links to good authorities, then it would be given a higher hub weight,
or if the web page provides links to sites with lower authority weight, then it would be given
a lower hub weight.

When a query is typed into a search engine, an ideal set of search results would (1) be
relatively small, (2) be rich in relevant pages, and (3) contain most or many of the strongest
authorities on the query topic.

In order to accomplish this, Kleinberg first uses a text-based search engine such as Alta-
Vista, and takes the top t pages (where t is usually set to about 200) returned for some
query. This set of web pages, called the root set, satisfies both (1) and (2). However, the
root set does not necessarily contain all of the highly weighted authorities. For example, if
the query in a text-based search was “red T-shirt,” the top search results returned are web
pages containing the term “red T-shirt” most frequently. A store specializing in making red
T-shirts should presumably be in the top t returned results. However, since these sites do
not contain the word “red T-shirt” as frequently as many other irrelevant sites, this may
not necessarily be the case. In order to circumvent this problem, the root set is expanded to
include more potentially strong authorities on a particular query. This is done by including
all the web pages that the root set points to, and also by including at most d web pages that
point to the root set. In his paper, Kleinberg set d equal to fifty. This expanded set, called
the base set, satisfies (1), (2), and (3).

87

APPENDIX A. RELATED RESEARCH 88

Figure A.1: This figure, taken from [Kle], illustrates the process in which the root
set expands to the base set. All of the web pages which the root set points to as
well as d web pages pointing into the root set is included in this expanded set.

The Kleinberg Algorithm then calculates the authority and hub weights for each web
page in the base set. The hub weight at time k + 1 of web page p is defined as the sum of
the authority weights at time k of the pages to which p points. The authority weight at time
k + 1 of web page q is defined as the sum of the hub weights at time k of all the pages that
point to q. This is an iterative process, where the Kleinberg Algorithm begins with hub and
authority weights each being normalized, so that the sum of the squares of the authority
and hub weights are each equal to one. Then, after each iteration the hub and authority
scores are normalized again so that the sum of their squares is equal to one. Kleinberg also
showed that this algorithm was guaranteed to converge. Often, about twenty iterations are
sufficient to stabilize the authority and hub scores. Then the authority scores are used as
the page rankings.

A.2 Other Web Search Algorithms

We examined the Exponentiated Kleinberg algorithm devised by the HNC Clinic Team
[MRSWLF], and the SALSA algorithm [LM].

A.2.1 Exponentiated Kleinberg

Hecht-Nielsen Corporation (HNC) Software sponsored an HMC mathematics clinic in the
1999-2000 school year [MRSWLF]. HNC specializes in software used in credit card fraud
detection. The division of HNC Software that the team worked for was eHNC, which dealt
with providing e-commerce solutions. This division wanted to make e-commerce websites
more efficient, which would in turn boost sales potential.

The HMC clinic team started off by examining techniques in link analysis, and applying
them to usage data provided by eHNC. Usage data is data that gives quantitative results
about the usage of a website. The one that was used in this clinic was a web server log, in

APPENDIX A. RELATED RESEARCH 89

which the data gave information such as who was requesting which page, and from which
page the user came. Initially the HNC clinic investigated ways to implement this as a tool
in fraud detection, focusing particularly on cellular phone fraud detection. As the year
progressed, the goal changed from the above to applying methods in link analysis to find
subnetworks of related individuals, and using social network theory to predict the existence
of links between individuals in a network.

The Kleinberg Algorithm was implemented with the aim of identifying cliques or sub-
networks of related individuals. The clinic team also implemented some new link analysis
techniques. The two modifications they made to the Kleinberg Algorithm were Exponenti-
ated Input to the Kleinberg Algorithm, and the Usage Weighted Kleinberg Algorithm. The
team proved that Exponentiated Input resolves two problems suffered by the Kleinberg Al-
gorithm, which were that the final hub and authority weights are not always independent of
the initial seed, and that zero weights can be assigned inappropriately. The HNC clinic also
developed ways to analyze the usage patterns of a website by using compression ratios.

A.2.2 SALSA and TKC Effect

The Tightly-Knit Community (TKC) Effect occurs when a densely interlinked cluster of web
pages receive high authority scores although these web pages do not have good information
on the particular query. This is not always bad. However, it can cause other more highly
relevant web pages to have lower scores relative to those web pages that have high scores
due to the skew created by the TKC Effect. For example, if there were a community x with
a small number of hubs and authorities, where each of the hubs points to all the authorities,
then each of the authorities would be given a high authority score. However, if there were
another, larger community y with web pages that are more relevant to the subject, but at
the same time, each hub points to only some of the authorities in y, the authorities in y
would get a lower score because y is not as densely interconnected as x is.

The Stochastic Approach for Link-Structure Analysis (SALSA) work of Lempel and
Moran [LM] is an algorithm that implements Markov chains, and stochastic properties of
random walks performed on the root set. If we have a graph where distinct WWW links from
the root set are the nodes, then a random walk on this graph will, with a high probability,
visit the relevant web page authorities. The state transitions in these graphs are the result
of traversing two hyperlinks in a row. By analyzing these two chains, a hub and authority
score could be given. The nodes that are being visited most frequently will determine the
top authorities and hubs. Each node corresponds to its own Markov chain, which is an
irreducible, aperiodic stochastic matrix. By the Ergodic Theorem, the principal eigenvector
of an irreducible, aperiodic stochastic matrix is the stationary distribution of the underlying
Markov chain. Its highest entries correspond to the sites that are most frequently visited by
the random walk, and thus correspond to the strongest authorities and hubs.

A.3 Summer Clinic Summary

Our summary of the 2002 Overture Summer Clinic is divided into three sections. First, we
present the motivation and the work of the Summer Clinic. Then, we present a summary of

APPENDIX A. RELATED RESEARCH 90

the code behind their implementation. Finally, we conclude with an analysis of their work
and results.

A.3.1 Ideas

The summer clinic team decided to use Micro Information Units (MIUs) in order to improve
web searches. MIUs are blocks of text on a web page that contain only one topic. This was
a new concept introduced in 2001 by Li et al [LPHL]. The summer clinic implemented the
MIU idea somewhat differently from Li et al. That is, instead of creating MIUs during query
time, the clinic team proposed pre-processing the entire web into MIUs, and then running a
search on these. Compare this idea to a search without using MIUs, where one might find
the two words of a query on a web page but in different paragraphs, which have nothing to
do with each other. Presumably, if a search is done on blocks that contain only one topic,
then the search should be better able to determine if the text is relevant.

The summer clinic team first converted a test subset of the web into MIUs. This set
consisted of about 2.5 million web pages from the Stanford WebBase. The team took each
web page and ran it through their version of the MIU analysis, which was to break pages up
according to the existing paragraph breaks (<p>). Subsequently, they compared adjacent
MIUs, and merged these two MIUs if the texts shared similar terms. To decide which
adjacent paragraphs would merge, the team needed a way to measure similarity between
texts: that is, to decide whether adjacent paragraphs were about the same topic. For this,
the team used the VSM method, which will be explained below.

In order to convert a test set of the web into MIUs, the team needed some way to measure
similarity between texts. For this the team used the vector space model, or VSM. VSM turns
texts into vectors, and then uses some function that compares how similar they are. The
team used the cosine similarity function in order to do this. They took the inner product of
the two texts (in vector form), appropriately weighted to adjust for the fact that smaller web
pages tend to be overlooked and larger pages appear more frequently. Through this process,
a normalized score was generated, signifying “how similar” the two blocks of texts were. If
the score exceeded some threshold defined by the team, then the two blocks were merged.
The team chose to compare only adjacent texts with each other rather than comparing all
texts pairwise to each other. This cut down on run time and intuitively makes more sense
since texts far away from each other are less likely to be relevant compared to texts that
are adjacent. Once the program stopped merging texts, the algorithm stopped. This took
about 20-30 iterations at most.

The summer clinic’s MIU breakup, or MIU analysis, should improve the root sets and
the authority scores. In theory, breaking up the web pages into MIUs reduces the chances of
a search engine returning results of a certain query that are on the wrong topic. This is true
because the MIU analysis weeds out the web pages that contain the query terms in different
MIUs. Hence, the improvement in the root set. Since we have a more precise, relevant root
set, this also results in the improvement of the assignment of authority scores.

APPENDIX A. RELATED RESEARCH 91

A.3.2 Our Review of the Summer Code

The Summer 2002 Overture Services Clinic report [FLMMT] included the full source code
for their implementation of the Kleinberg and MIU-seeded Kleinberg algorithms, along with
supplementary documentation. Although several of their command line maintenance tools
are not included in their report, our team has access to the computers they used over the
summer, which still include these tools and all of their data. The code performs the basic
Kleinberg and MIU-seeded Kleinberg search. In addition, it exploits parallelism in various
processing stages.

Unfortunately, the structure of the code makes it both hard to read and hard to modify.
This limitation is understandable in light of the time restrictions of the Summer Clinic. The
team divided the code into multiple files where each file acts as a subroutine, taking some
input and generating some output. There is no reuse between files, and the code uses the
copy-and-paste action a lot. Consequently, any change needs to be applied to every repeated
occurrence, rather than to only one location. Also, there are many magic numbers and magic
strings throughout the code. These are values used simply as constants, sometimes multiple
times. For any changes, one must change all of the specific values, instead of only changing
a common variable. One notable occurrence of this is with file names. Instead of a shared
list of file names, each program contains all of the file names as inline strings. As a result,
the code lacks modularity. We would need to alter large portions of the existing code even
for relatively simple alterations.

The language the Summer Clinic chose to implement their algorithm was Perl. Perl is
a difficult language for future programmers to support. There are many different ways to
accomplish the same task, and so extremely good documentation is essential with Perl code.
The Summer Clinic team did not fully document their code. Throughout the code, the
comments assume a reader who is familiar with the Perl features used. These comments,
however, do not always explain how these features are used in the code. Also, there is no
documentation of the intermediate files created by the various processing steps.

A.3.2.1 Decision to Write our Own Code

Originally, we thought we could modify the Summer code to abstract common functional-
ity and create generalized input-output routines. These routines would correspond to the
sections in our pipeline diagrams (see Section 4.1).

Further review showed this not to be feasible. The existing code was too interdependent
to easily modify. However, this is not a significant problem; the course of our project changed
(see Chapter 2) and it no longer requires an implementation of the Kleinberg algorithm.

Although the existing code contained a working version of MIU analysis, this analysis
depended on a global word list for all the pages in the data set. Thus, even abstracting
simply the MIU analysis would have been difficult and time consuming. Consequently, we
have decided to create entirely new code for the project, although we may base ideas and
implementations on the Summer Clinic’s code.

APPENDIX A. RELATED RESEARCH 92

A.3.3 Our Report On The Summer Code

The Summer Clinic broke up the web pages pre-query. They broke up these pages into MIUs
using the html tags, splitting the page up by paragraph breaks (<p>). Then, they merged
the adjacent MIUs if they contained enough of the same terms a certain number of times.
We looked in detail at the code’s effect on 4 web pages, and found that in some cases, the
MIUs did not merge correctly. That is, even though some of the neighboring MIUs dealt
with the same topic, they did not merge. Also, there were instances when the initial MIU
analysis did not break up the web page into enough MIUs. Hence, the MIU analysis failed
to separate the text into independent topics. In addition, extraneous HTML code such as
comments, were sometimes included in the MIU analysis when they should not have been.

One of the web pages we looked at from the Summer Clinic’s database was http://www.
ahanews.com/robots.txt. After some analysis of the code, and examination of a web page
that was run through the Summer Clinic’s MIU analysis, we made a few observations. As we
stated above, the MIUs were split up according to paragraph breaks. In this case, the code’s
break up agreed with the break up we would have reached by hand. However, in general, this
will not always be the case. Also, the Summer Clinic’s code included extraneous html code
which included comments, words in the html tags (e.g. topmargin, leftmargin, and bgcolor).
Figure A.2 shows this web page after going through the MIU analysis.

Figure A.2: This image is the web page, http://www.ahanews.com/robots.txt,
which is broken up into MIUs according to the Summer Clinic’s version of MIU
analysis.

Our team also looked at how many pages were split into n MIUs. We took the Summer
Clinic’s data set that they had run through their MIU analysis. Then we took these web
pages that were broken up into MIUs, and ran these through our code, which tells us the
number of MIUs in each web page. From this, we found that that over half of these web
pages had only one MIU. On the extreme side, we found one web page with 400 pages that

APPENDIX A. RELATED RESEARCH 93

was broken up into 1381 MIUs. Figure A.3 is a histogram of our findings.
MIU Histogram Data on Summer Clinic Data Set (2.3 million pages)

1

10

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000 1200 1400 1600

Number of MIUs (n)

N
um

be
r o

f p
ag

es
 w

ith
 n

 M
IU

s
on

 th
em

 (l
og

 s
ca

le
)

Figure A.3: This is a histogram of log of the number of pages with n MIUs vs.
number of MIUs (n)

We conclude that the links in a given web page would end up in whatever MIU they
just happen to fall under according to the Summer Clinic’s method. Thus, the links do not
always match up with the particular MIUs they should be in. This, in turn, would result in
inaccurate search results, because Kleinberg’s Algorithm is dependent upon the links on a
web page. Since each MIU is treated as its own web page, the Kleinberg Algorithm would
end up returning inaccurate results.

A.4 Topic Sensitive Search

A user’s intent when entering a query may be ambiguous, depending on the words entered.
For example the query ”blues” does not specify if the user intended to search for music or
medical depression. Ambiguous queries may be another issue for the Overture Clinic team,
as the overall goal of the project is to improve the relevance ordering of web searching.
Haveliwala [Hav] presents an idea that deals with this issue, and may lead to future research
and work for the team.

APPENDIX A. RELATED RESEARCH 94

The original PageRank algorithm computes the relative importance of each web page
and returns the rankings in a single PageRank vector before any particular search query
is done. Haveliwala [Hav] proposes creating a set of PageRank vectors to divide the web
up by topics, and doing a search on these topics in order to make the desired results more
specific. In certain instances this approach is very useful because the context of the query
can eliminate ambiguity. For example, if a user performs a query by highlighting the term
“architecture” from a web page related to creative building designs, then it is reasonable to
want the results to be related to buildings as opposed to the “architecture” of CPU design.

The subject matter of the web page can be used to find more of the right links. The
authors also mention other contexts, such as the user’s declared interests, or the user’s past
history of web searches. The paper goes into some detail about the algorithm used, and uses
actual volunteers to argue that their results are more specific than an unbiased PageRank
search. This concept might be an interesting way to improve upon or modify the work
previously done, as it does not appear to be unique to the PageRank algorithm itself.

